
THOR, THOR MPP Data Server, and THOR SQL objectManager are trademarks of
Hitachi Computer Products (America), Inc.

Other companies and product names are trademarks or registered trademarks of the
respective companies.

THOR™
The Hitachi Object Relational Database System

White Paper

Introduction

Purpose This White Paper is designed to provide a broad technical overview of THOR™ – The
Hitachi Object Relational Database System.

Audience The audience for this White Paper is managers, executives, system administrators, and
decision-makers with responsibility for large-scale DBMS systems.

Future White
Papers

Forthcoming additional White Papers will discuss the technical details of THOR and its
administration capabilities and tools in greater depth.

Executive
Summary

We have extracted all the major ideas in this paper into an Executive Summary that begins
on the next page. The summary consists of all the shaded paragraphs throughout the paper.

Contents of this
White Paper

In the rest of this paper, we detail how THOR's hardware and software architecture combine
to provide relief from the growth and management concerns currently facing DBMS
managers and administrators.

Executive Overview ... 1
Problem/Solution Statement... 3
THOR's Turnkey Solution.. 5
How THOR Achieves Maximum Performance 9
THOR's Architectural Configurations 16
The Bottom Line.. 18
Who is Developing THOR, and Why?.................................. 19
Where Can I Learn More about THOR?............................... 19
Features and Specifications .. 20
Abbreviations Used in this White Paper 21

THOR Executive White Paper December 1996, Rev. E-2 Page 1

Executive Overview

Executive Overview

This Executive Overview consists of selected key paragraphs from throughout this paper.

Data processing requirements will continue to grow for
the foreseeable future, yet staff and financial resources
for DBMS applications and support will continue to be
stretched thin. Managers are awash in data that they
need to use in a variety of ways to maintain their
competitive advantage. DBMS systems and tools must
quickly evolve to manage the forthcoming data
explosion.

The obvious solution to the problems facing today's
DBMS managers is to use a central “industrial
strength” data storage facility such as that provided by
a relational DBMS (RDBMS), but one which extends
the relational model to incorporate additional data
types and operators. This is precisely what THOR has
implemented in its Object Relational Database
(ORDBMS) model.

THOR’s unique ORDBMS design addresses all the
issues discussed to this point. But no matter how
elegantly designed or how highly optimized for speed,
a solution isn't a solution if it doesn't meet other basic
criteria. Specifically, DBMS managers and
administrators need a solution that is easy to
administer, scaleable, extensible, and open.

Only one database system meets all these criteria —
THOR

Because of THOR's unique methods of data
distribution and parallel processing, THOR is able to
dispense with many time-consuming administrative
tasks that other systems require. THOR also
implements a variety of features to ensure RAS.

THOR's shared-nothing approach, combined with its
unique data-driven implementation, provides
processing that is more inherently parallel and easier to
distribute among processors than current
implementations.

THOR was designed and implemented using object-
oriented (OO) design tools and techniques, and is
programmed to understand relational operators within
this context.

Object capability allows developers not only to create
new data types, but also to create new predicates, such
as SIMILAR and PARTIAL, for the new data type
FINGERPRINT. These predicates are evaluated by
invoking calculation functions which the developer
supplies, and which reside within the database just as
EQUAL functions do today for each of the data types
currently supported by SQL.

Another interesting example of how THOR supports
new data types is the World Wide Web. Typical web
sites offer several types of data, including text,
pictures, movies, and sounds. THOR can support this
mixed environment, especially when the requirement is
for ad-hoc searches and queries.

By providing support for open interfaces, THOR
preserves your investment in standard tools and
applications. In fact, THOR SQL objectManager
supports both standard SQL, through open interfaces
such as the ODBC API, and the SYBASE Open
Client/Server APIs, including Transact-SQL and
DB/Net libraries.

The THOR MPP Data Server™ platform consists of
four to 288 processing nodes configured in a shared-
nothing configuration. THOR was designed from the
ground up to be the first MPP solution that is both
massively parallel and inherently object oriented. Of all
MPP implementations, only THOR's SQL
objectManager is truly object-oriented: all data is
encapsulated with the behaviors or functions needed to
operate on the data.

THOR Executive White Paper December 1996, Rev. E-2 Page 2

Executive Overview

The software design of THOR is based on a data-driven
model of execution, implemented using object oriented
technology. Data-driven processing and object
orientation combine to yield a product which is truly
unique today, but which will be the paradigm for the
next generation of implementations by other vendors.

Data-driven processing finds multiple operations that
can be undertaken concurrently within the evaluation
of one or more expression. Data-driven processing is
inherently parallel, and overcomes the limitations of
procedural programming, in which each statement
must complete execution before the next statement
begins. This model lets THOR process and evaluate
many queries at the same time, further increasing
performance.

THOR’s unique method of distributing query initiation
tasks among all nodes in the system, coupled with its
data-driven and object-oriented approach to query
processing at the node level, means that a large
number of queries can be processed in parallel (inter-
query parallelism). It also means that a single query
can be processed in parallel on all nodes at once (intra-
query parallelism.) In this way, THOR fully maximizes
the parallel capabilities of its hardware and software
system.

In summary, THOR was designed to address and
resolve some of the most pressing issues facing
database managers and administrators today. As you
continue your reading and research in this important
area of your business, we hope you will compare
THOR to every other system you review. We are
confident that THOR will come out on top.

THOR Executive White Paper December 1996, Rev. E-2 Page 3

Problem/Solution Statement

Problem/Solution Statement

The Problem

Data processing requirements will continue to grow for the
foreseeable future, yet staff and financial resources for DBMS
applications and support will continue to be stretched thin.
Managers are awash in data that they need to use in a variety
of ways to maintain their competitive advantage. DBMS
systems and tools must quickly evolve to manage the
forthcoming data explosion.

The Solution

The obvious solution to the problems facing today's DBMS
managers is to use a central “industrial strength” data storage
facility such as that provided by a relational DBMS
(RDBMS), but one which extends the relational model to
incorporate additional data types and operators. This is
precisely what THOR has implemented in its Object
Relational Database (ORDBMS) model.

The Major Issues

THOR™ addresses four major issues currently facing DBMS managers and administrators:

• Overcoming performance barriers
• Controlling costs
• Supporting new data types such as pictures, movies, and sounds
• Moving toward data warehouse implementations

Overcoming
performance
barriers

Current OLTP implementations are reaching performance barriers. Systems cannot scale
beyond a certain point, and performance barriers are being reached.

Controlling costs Achieving maximum value for money spent is critical. Budgets are not growing as fast as
performance requirements. As data processing requirements expand, systems need to scale
appropriately.

Supporting new
data types

New and more complex data types are becoming increasingly important in data processing
environments. Managers need to query and report on non-traditional data using the same
management tools available to work with traditional data types.

The changing
data processing
trend

The competitive power of complex query applications is no longer in doubt. Though they go
by many names, including DSS (Decision Support System), Data Warehousing, Data Marts,
OLAP (Online Application Processing), Data Mining, etc., these applications are rapidly
becoming indispensable to any world-class enterprise. Data sets are growing significantly,
requiring more processing power than many current OLTP implementations.

THOR Executive White Paper December 1996, Rev. E-2 Page 4

Problem/Solution Statement

OLTP and DSS/OLAP differences

Introduction There are three fundamental differences between OLTP and DSS/OLAP systems:

• Some data warehouses are far larger than the databases common in OLTP.
• OLAP consists of queries that are more complex than OLTP queries.
• Not all forms of data fit neatly into the SQL tables common in OLTP applications.

Larger databases Some data warehouses are far larger than the databases common in OLTP, and the data to
be analyzed are growing faster than processor power is increasing. Symmetric Multi-
Processing (SMP) systems that easily handle large OLTP applications cannot scale fast
enough to grow as data warehouse applications will, and are reaching performance limits.

More complex
queries

OLAP consists of queries that are more complex than OLTP queries. Complex queries are
much harder to parallelize than the simple atomic transactions of OLTP. Parallel systems
engineered for OLTP and SMP systems can falter under the load imposed by complex
queries.

Non-traditional
data types and
operators

Not all forms of data fit neatly into the SQL tables common in OLTP applications. Today’s
vastly increased system capability has made possible a broad range of business applications.
Data warehouses must increasingly house data that doesn't fit the traditional models of
numbers or text, such as: time series data in the finance industry; geographic data in many
industries; and pictures, images, video and sound in Intranet and Internet applications.

The limitations of the relational model have become a significant problem for a new
generation of applications. Work is underway in the SQL language standards community to
address these market requirements in the SQL3 standard, but this will not be ratified before
1998 at the earliest. Customers are demanding relief before then.

THOR’s Object-Relation model meets the criteria for a real solution

Introduction THOR’s unique ORDBMS design addresses all the issues discussed to this point. But no
matter how elegantly designed or how highly optimized for speed, a solution isn't a solution
if it doesn't meet other basic criteria. Specifically, DBMS managers and administrators need
a solution that is easy to administer, scaleable, extensible, and open.

Easy to
administer

THOR reduces the system administrator's burdens of tuning the databases, optimizing
queries, and partitioning distributed data, performing these tasks with significantly less
manual intervention than current systems require. THOR also incorporates a number of RAS
(Reliability, Availability, and Serviceability) features to ensure minimal down time and
rapid recovery from system problems.

Scaleable THOR lets you "rightsize" your hardware as your processing requirements grow, increasing
processing speed almost linearly as new processors are added.

Extensible THOR has an object-oriented foundation, making it easy to support new data types and data
operators. At the same time, THOR works with your existing SQL-based RDBMS, enabling
you to build object support on top of (rather than in place of) your current implementation.

Open THOR uses existing tools and applications and leverages current RDBMS investment to the
greatest extent possible.

THOR Executive White Paper December 1996, Rev. E-2 Page 5

THOR's Turnkey Solution

Only one database system meets all these criteria —

THOR

THOR Tower configuration

THOR's Turnkey Solution

Introduction THOR™ is a complete turnkey system, comprising:

• THOR MPP Data Server™ hardware – simple hardware optimized to provide a cost-
effective platform for the SQL objectManager software

• THOR SQL objectManager™ software – an object relational SQL implementation
designed to run on parallel shared-nothing hardware

The following sections briefly describe how THOR satisfies the criteria of being easy to
administer, scaleable, extensible, and open.

THOR is easy to administer

Introduction Because of THOR's unique methods of data distribution and parallel processing, THOR is
able to dispense with many time-consuming administrative tasks that other systems require.
THOR also implements a variety of features to ensure RAS.

Automatic data
partitioning

THOR SQL objectManager distributes and partitions data across nodes via a proprietary
hashing algorithm. Hashing provides a uniform data distribution, which leads to very good
load balancing. Administrators no longer have to consider partition size and location issues
as their databases grow in size.

THOR Executive White Paper December 1996, Rev. E-2 Page 6

THOR's Turnkey Solution

Automatic query
optimization

THOR uses a proprietary, highly tuned, cost-based query optimizer to speed up the
processing of SQL queries. Administrators and programmers no longer have to tweak, tune,
and test the majority of their queries to enhance performance.

Extensive RAS
features

THOR incorporates a number of hardware and software design elements to minimize the
possibility of system crashes, and to enable rapid recovery from any system problems. These
features are briefly listed below.

• Hardware
◊ N+1 redundant power supplies
◊ Environmental monitoring
◊ Diagnostics suite
◊ Front-accessible disk drives
◊ ECC protected memory and memory bus
◊ Flash upgradeable firmware

• Software
◊ Data and log mirroring across nodes
◊ Support for ACID transaction principles
◊ Parallel backup and restore
◊ Remote system monitoring and configuration

THOR is scaleable

Introduction THOR's shared-nothing approach, combined with its unique data-driven implementation,
provides processing that is more inherently parallel and easier to distribute among
processors than current implementations.

Shared-nothing
approach

A shared-nothing approach means that each processor node on the system has its own
memory, hard disk, CPU, and communications connections. Shared-nothing systems can
provide linear speed-up and scale-up for up to thousands of processors, because they don't
have the resource bottlenecks of shared-memory and shared-disk systems.

Data-driven
implementation

Data-driven implementation means that queries are divided into discrete tasks that are
executing at the same time on multiple processors. The transaction is complete when all the
tasks are complete and the results assembled in the proper order.

THOR is extensible

Introduction THOR was designed and implemented using object-oriented (OO) design tools and
techniques, and is programmed to understand relational operators within this context.

Native OO
support and
native relational
support

As with any OO system, THOR's OO design incorporates classes, attributes, and instances.
The OO design is in contrast to the existing major RDBMS systems, which are based on
procedural programming models. Because of their procedural nature, they have often had to
be extensively rewritten to support major enhancements, frequently resulting in
implementations that were poorly designed or that suffered severe performance problems.

THOR is also designed to understand row and column data and their associated relational
operators. THOR easily performs relational operations on both traditional data types and on
new, complex data types.

THOR Executive White Paper December 1996, Rev. E-2 Page 7

THOR's Turnkey Solution

BLOB support THOR also implements Binary Large Object (BLOB) support for new data types such as
video, audio, and bitmaps. The object programming model guarantees that THOR is
extensible for new data types and for defining new operations on data.

Easy support for
new data types

Let’s consider a simple example of a data type extension to SQL. Suppose we want to create
a database of fingerprints. For each fingerprint in the database, we want to store some
traditional SQL type data about when and where it was collected, to whom it belongs, etc.

In addition, we want to store the fingerprints themselves as part of the database. Since
fingerprint is not a legitimate data type in SQL, we will need to add one or more new data
types. For simplicity, we’ll assume that one new data type will suffice.

Adding
predicates for
the new data
type

Object capability allows developers not only to create new data types, but also to create new
predicates, such as SIMILAR and PARTIAL, for the new data type FINGERPRINT. These
predicates are evaluated by invoking calculation functions which the developer supplies, and
which reside within the database just as EQUAL functions do today for each of the data
types currently supported by SQL.

Querying on the
new data type

The newly defined predicates can be used as qualifiers within a WHERE clause in SQL for
queries to the fingerprint database. This makes it possible, for example, to screen the
database for suspects in a particular crime based on similarity of fingerprints on file to one
found at the scene. One way such support might be implemented is shown in the following
pseudo-SQL example.

SELECT IMAGE, NAME, AGE, SEX, HT, WT, DOB
AS SUSPECT
FROM TAKENPRINTS
WHERE SIMILAR (IMAGE, SAMPLE)
 AND NOT PARTIAL(IMAGE)
…

Web pages and
data type
support

Another interesting example of how THOR supports new data types is the World Wide Web.
Typical web sites offer several types of data, including text, pictures, movies, and sounds.
THOR can support this mixed environment, especially when the requirement is for ad-hoc
searches and queries.

For example, a retail site might let a customer look up a specific type of suit based on certain
criteria, such as color, cost, and fabric. THOR can return a picture of the suit, a movie clip of
a model presenting it, and voice-over of the features. THOR and the World Wide Web can be
a very powerful combination.

THOR is open

Introduction By providing support for open interfaces, THOR preserves your investment in standard tools
and applications. In fact, THOR SQL objectManager supports both standard SQL, through
open interfaces such as the ODBC API, and the SYBASE Open Client/Server APIs,
including Transact-SQL and DB/Net libraries.

Standard SQL
gateway support

Figure 1 illustrates the arrangement of the THOR MPP Data Server relative to other
computing devices in the data warehouse environment. THOR's standard SQL gateway
allows the THOR server to accept data from a variety of sources, and to act as either a data
warehouse or a data mart.

THOR Executive White Paper December 1996, Rev. E-2 Page 8

THOR's Turnkey Solution

Data
Warehouse

Warehouse CreationData Generation

Operational
Traditional
Applications

Applications
With New

Data Types
(Video, Voice)

Warehouse Loading

Warehouse Applications

Data Mining
Applications

Decision
Support

Applications

Data Distribution

Mission Critical
Applications

(OLTP)

Data Acquisition
Locate
Collect/consolidate
Identification
Cleanse/Validate

Data Marts

Data Mart Clients

Figure 1. THOR in the data warehouse environment

Open
architecture

Figure 2 illustrates THOR's open system architecture, and how it presents a single database
view to the user.

THOR SQL objectManager
Single Logical Database

NodeNode NodeNode NodeNode

ODBC
Client

Interface

Sybase
Open Client

Interface

THOR MPP Data Server

SQL
Interface

Mainframe
Gateway
Interface

Figure 2. THOR's open system architecture

SYBASE Open
Client and
Transact-SQL
support

THOR also supports SYBASE's Transact-SQL, an API that includes the SQL command set,
and SYBASE's SQL Manager Open Server/Open Client APIs. This means that THOR
supports many of the data types, SQL, stored procedures, and triggers compatible with
SYBASE, one of the most widely used, open client-server platforms available today.

Figure 3 shows a possible THOR implementation, in which THOR fully participates with an
existing SYBASE Open Client implementation.

THOR Executive White Paper December 1996, Rev. E-2 Page 9

How THOR Achieves Maximum Performance

UNIX, X-Window
Client

DOS, Windows,
OS/2 Client

Application

Application, Front-End
Query Tool, etc.

Front Ends:
 - SYBASE Libraries
 - PowerBuilder
 - ObjectView

SYBASE Open Client SYBASE Open Client

SYBASE SQL
 or ODBC

Toolset or Application

SYBASE Open Client

THOR MPP Data Server hardware
THOR SQL objectManager software

LAN
 - TCP/IP
 - Novell Netware
 - DEC Pathworks

UNIX Workstation
 - Sun
 - IBM RS/6000

SYBASE Open Server

THOR Network
Gateway Software

Macintosh
Client

Front Ends:
 - Hypercard for SYBASE Libraries
 - Open Client for
 Programmer’s Workbench

High-Speed Channel

THOR

Figure 3. A THOR implementation using SYBASE Open Client

Plug-and-Play
support

Application programmers who are using the latest application builder suites (e.g.
PowerBuilder from SYBASE, Visual Basic from Microsoft, etc.) can create plug-and-play
applications that interface with THOR’s SQL architecture.

How THOR Achieves Maximum Performance

Introduction The THOR MPP Data Server™ platform consists of four to 288 processing nodes configured
in a shared-nothing configuration. THOR was designed from the ground up to be the first
MPP solution that is both massively parallel and inherently object oriented. Of all MPP
implementations, only THOR's SQL objectManager is truly object-oriented: all data is
encapsulated with the behaviors or functions needed to operate on the data.

In this section of the White Paper, we describe how THOR’s hardware and software models
support maximum performance in a number of ways, including:

• Shared-nothing, MPP hardware configuration
• Unique toroidal mesh interconnect among processing nodes
• Uniform data distribution among nodes
• Underlying data-driven, object-oriented design
• Deadlock prevention via serialization instead of costly row and table locking
• Partitioned and pipelined parallism

THOR Executive White Paper December 1996, Rev. E-2 Page 10

How THOR Achieves Maximum Performance

Why THOR uses a shared-nothing, MPP hardware configuration

DSS/OLAP
requires better
scaling

There are significant advantages to an MPP architecture for processing the complex queries
which characterize the DSS/OLAP market. These queries tend to be quite different from
those in transaction processing. They often touch large amounts of data, are normally quite
I/O intensive, and can run for very long times. They freely use SQL operators such as joins
and aggregations that require processing large numbers of inter-row relationships, and thus
they demand much more in the way of computing resources than typical OLTP queries. The
result is that an architecture such as a shared-nothing MPP system, which isolates
processors, scales much better than SMP for this workload.

Shared-nothing:
definition

In a shared-nothing organization, the hardware is a set of processor nodes connected by a
communication network. Each node contains its own CPU, memory, I/O bus, and disk
storage. All communication between processors is switched through the communications
network.

The shared-nothing organization can be compared to two other MPP hardware
organizations:

• The shared-disk model, where each node has its own private memory, but can directly
access all disks.

• The shared-memory model, where all nodes can directly access common memory and all
disks.

Shared memory
or shared disk
systems don’t
scale

At first sight, common access to shared data should make it easier to build a system, because
any processor can have access to any data item that it wants. In fact, this is the main source
of bottleneck problems. The intensive I/O activity in DSS/OLAP applications must compete
with the CPU for memory bandwidth. In SMP and shared-disk or shared-memory MPP
systems, as the number of CPUs increases, contention for resources such as memory
becomes more intense, and performance suffers a severe impact.

Shared-nothing
makes near-
linear speedup
and scale-up
possible

Because of THOR’s shared-nothing architecture, the addition of more processing nodes does
not lead to memory, disk, or CPU bottlenecks. In THOR's MPP implementation, each node
has its own resources, so contention remains essentially constant no matter how many CPUs
are added. In fact, the only contention in THOR is for communication bandwidth, and
communication bandwidth increases as nodes are added, so never becomes a bottleneck.

This means that there is very little overhead relative to the size of a system; if system A has
twice as many nodes as system B, system A will process queries and perform administrative
tasks roughly twice as fast as system B. This capability ensures that managers can always
scale a system appropriately, and add processing power simply by adding additional nodes.

THOR's unique toroidal mesh interconnect

Introduction For maximum performance, SQL objectManager must have homogeneous connectivity
among its nodes, with low latency, minimum interference among the traffic on the network,
and minimum path length between source and destination nodes. THOR achieves this
objective by using a unique toroidal interconnect, managed by a dedicated set of
communication processors, one in each node.

THOR Executive White Paper December 1996, Rev. E-2 Page 11

How THOR Achieves Maximum Performance

Envisioning the
toroidal mesh

The toroidal interconnect can be visualized as follows. First, imagine a rectangular
connection grid with a processor node at each intersection, as shown in Figure 4 (a). Then
connect the processing nodes on the right to those on the left with added network lines,
forming a cylindrically connected system as shown in Figure 4 (b). Finally, envision
connecting the nodes in the top and bottom planes as shown in Figure 4 (c). The nodes are
connected as if they were laid out on the surface of a torus, or a doughnut shape.

(a) (b) (c)

Figure 4. Envisioning THOR's Toroidal Mesh

How nodes
interconnect

Each node interconnects with the other nodes in a “nearest neighbor” fashion. This
connection employs special communication processors to offload the CPUs and is more cost-
effective than other MPP systems that rely on multistage or crossbar switches or require the
CPU to participate in the data routing. It also provides enhanced system availability through
multiple path routing. (The communication processors are discussed more fully in “The
node's communication processor” on page 17.)

The toroidal mesh topology has the important property that the array of processors is
symmetric with respect to every node. Any function can be assigned to any node, and it will
perform as well as if it had been assigned to any other node. This homogeneity is the most
efficient communication design for optimal execution of the SQL objectManager software.

Uniform data distribution among nodes

Introduction THOR uses processor affinity, combined with a proprietary hashing algorithm, to
automatically and uniformly distribute database rows among processor nodes.

Why is uniform
data distribution
important?

For parallel processing to achieve optimum performance, table rows must be distributed
evenly among a system’s processors. If four processors each contain 1000 rows, for example,
and if the processors work in parallel, the time it takes to process all 4000 rows is roughly
comparable to the time it takes to process 1000 rows. However, if one processor contains
2500 rows and the others contain 500 rows each, the time it takes to process all 4000 rows is
roughly comparable to the time it takes to process 2500 rows, or all the rows on the
overloaded processor. Uniform distribution, therefore, maximizes parallel processing
performance for many operations.

Affinity:
definition

A technique sometimes used to distribute data among nodes is called affinity. The term
comes from the fact that each data item has affinity for a processor. Each processor is given
a part of the database to manage, and all requests for that data are routed through that
processor. THOR's shared-nothing system implements affinity; each processor accesses data
and memory on its own disks.

THOR Executive White Paper December 1996, Rev. E-2 Page 12

How THOR Achieves Maximum Performance

Hashing:
definition

To determine which row has affinity with which node, THOR uses a proprietary hashing
algorithm. A hashing algorithm is simply a formula that generates a number indicating to
which node a row should be assigned.

How THOR
generates hash
values

THOR’s hashing algorithm uses a large random number, in conjunction with the primary
index of a row, to generate the row's hash value. Bits from the hash value are used to select
the node where the row resides.

To ensure even data distribution, the THOR SQL objectManager requires that the primary
index for a table be unique. If a table has no primary unique index, THOR generates a
synthetic hash value that ensures “round-robin” distribution of data to nodes.

Data-driven, object-oriented design

Introduction The software design of THOR is based on a data-driven model of execution, implemented
using object oriented technology. Data-driven processing and object orientation combine to
yield a product which is truly unique today, but which will be the paradigm for the next
generation of implementations by other vendors.

A brief
description of
data-driven
processing

Data-driven processing finds multiple operations that can be undertaken concurrently within
the evaluation of one or more expression. Data-driven processing is inherently parallel, and
overcomes the limitations of procedural programming, in which each statement must
complete execution before the next statement begins. This model lets THOR process and
evaluate many queries at the same time, further increasing performance.

How queries are
executed

As each user query comes in, it is assigned to the next available node in a “round robin”
fashion. It is possible to do this only because the node array is symmetric with respect to
each node, and because every node in the system can perform all the functions of the
database system.

The assigned node is referred to as the initiating node or query captain for that query, and is
responsible for:

• Parsing the query
• Optimizing the query
• Breaking the query down into tokens, or messages
• Obtaining serialization tags
• Accumulating the final results and performing the final aggregations
• Coordinating the transaction commit

Multiple nodes act as query captains for multiple queries in parallel, which leads to greatly
improved performance.

Figure 5 shows a simplified schematic of THOR’s toroidal mesh, illustrating how the query
captain and the nodes communicate.

THOR Executive White Paper December 1996, Rev. E-2 Page 13

How THOR Achieves Maximum Performance

node node node node

node node node node

Query
Captain

node node

node node node

node

node

Figure 5. How nodes communicate during a query

As discussed in “Uniform data distribution among nodes” on page 11, each node is given a
part of the database to manage, and all requests for that data are routed through that
processor. This feature means that each node contains specific data, in the form of row
objects.

Following is a simplified description of the procedure THOR uses to process and execute a
query.

Step 1 –
The query
captain prepares
and distributes
the query

1a) At the initiating node, the query is parsed, analyzed, and optimized. This process
defines a plan of execution for the database node software.

1b) The plan is then broadcast via messages to all nodes for execution by their row objects.

Step 2 –
The row objects
process the
query

2a) Each row object determines whether it matches the query criteria and, if so, how it
needs to compute and distribute data to successive objects or back to the query captain.
The row objects communicate among themselves via messages to complete execution.

2b) As results for a set of rows on a node are available, the nodes distribute interim results

to other row objects or back to the query captain.

Step 3 –
The query
captain
assembles and
returns results

3a) As results are pipelined in from the processing nodes, the query captain performs any
final aggregations and calculations.

3b) When all results have been returned and all processing has been completed, the query

captain returns the final results to the requester.

THOR Executive White Paper December 1996, Rev. E-2 Page 14

How THOR Achieves Maximum Performance

Summary As the steps above illustrate, the only tasks that occur sequentially during a query are those
performed by the query captain. All primary database processing takes place in parallel on
all nodes at once.

THOR’s unique method of distributing query initiation tasks among all nodes in the system,
coupled with its data-driven and object-oriented approach to query processing at the node
level, means that a large number of queries can be processed in parallel (inter-query
parallelism). It also means that a single query can be processed in parallel on all nodes at
once (intra-query parallelism.) In this way, THOR fully maximizes the parallel capabilities
of its hardware and software system.

Inter- and intra-query parallel processing are discussed in more detail in “Partitioned and
pipelined parallelism” on page 15.

Preventing deadlock

Introduction In the past, parallel DBMS implementations have been severely affected by deadlock
contention. Reducing deadlock contention has been a problem both for efforts to process
multiple queries in parallel and for efforts to process a single query in parallel across
multiple nodes.

Lock table can
lead to bottle-
necks

A common solution to this problem is for the software to mark pages as locked so that one
processor can finish making its update before other processors are allowed to use the data.
Unfortunately, the lock table is often centralized, and as more processors are added, the lock
table becomes a bottleneck that limits system performance.

Serialization
replaces the lock
table

With data-driven as with any other execution model, it is necessary to ensure that operations
take place in the correct order. In place of row-level or table-level locking, THOR uses a
data-driven technique called serialization for most operations. The function of serialization
is to make explicit which operations must precede other operations, and which can proceed
at the same time.

Serialization
tickets

Each operation that needs to be carried out (INSERT, UPDATE, SELECT, etc.) is assigned
a serialization ticket. For each row object that requires a ticket, the row object is looked up
and its serialization counters are incremented. Operations are then executed in the order that
the tickets were issued. Once an operation has been issued tickets, the statement is
serialized.

Tickets have two important properties:

• Tickets are just numbers, and thus are very fast and easy to issue.
• Tickets allow a row object to make a local decision about the order in which operations are

executed.

Ticket generation is the only centralized function in THOR's software.

Read and write
processes
isolated

Each operation receives both a read and a write ticket, so that any number of reads can be
carried out until a ticket for a write operation comes along. At that point, other read and
write operations must wait only for the brief instant while the write operation is completing.

THOR Executive White Paper December 1996, Rev. E-2 Page 15

How THOR Achieves Maximum Performance

The major
benefits of
serialization

Serializing a statement has several important benefits:

• Many transactions that are deadlocked on other RDBMS systems are deadlock-free and

restart-free on THOR.
• Even though the query may execute on many processors in parallel, all decisions about

ordering operations can be made locally by the row objects. This minimizes inter-node
communication, thus speeding up query processing.

• Serialization provides distributed concurrency control, and replaces the lock manager.
There is no need for any other concurrency control mechanism.

Serialization and
ACID principles

Serialization also assures that transactions meet the ACID principles for proper transaction
processing. ACID stands for the following properties:

• Atomicity - The transaction is an atomic unit, consisting of a single collection of actions
that is either completed in full (committed) or aborted in full (rolled back).

• Consistency - All integrity constraints of the database are fulfilled after the transaction
has finished, thus leaving the database in a consistent state.

• Isolation - A transaction must be processed in apparent isolation. Data used by a
transaction cannot change while the transaction is being processed. Similarly, other
transactions can't use the results of the current transaction until it is committed or aborted.

• Durability - Once a transaction commits, its results must be durable, even in the case of
software or hardware failures.

Partitioned and pipelined parallelism

Introduction All of the features discussed above work in concert to enable two forms of parallel
processing, partitioned and pipelined. Each of these is briefly described in this section.

Partitioned
parallelism
improves intra-
and inter-query
performance

Partitioned parallelism refers to a system’s ability to distribute a single query across
multiple nodes at the same time. For example, imagine you have to go through the phone
book to find the name of someone whose phone number you have. Obviously, this could take
a very long time. Now imagine that the phone book is divided up into 100 sections of equal
size, and 100 people are simultaneously looking for that name. The result will be found in
approximately 1/100 the time. This is analogous to one of the primary ways THOR
maximizes intra-query processing performance.

Partitioned parallelism also refers to a system’s ability to perform multiple queries on a node
at the same time. Returning to our phone book example, this time imagine that your 100
people have to find two names instead of one. Instead of looking for only one name, each
person can be looking for both names at the same time. Because both queries (“find a name”)
are being executed in parallel, results will be returned in less time than if the queries were
processed in serial, one after the other. This is analogous to one of the primary ways THOR
maximizes inter-query processing performance.

Pipelined
parallelism
improves intra-
query
performance

Pipelined parallelism refers to a system’s ability to begin feeding results back as they are
available. Continuing our phone book example, imagine this time that you have to produce a
sorted list of all people whose phone number begins with 234. If you are the query captain
(as described in “How queries are executed” on page 12), you are responsible for sorting the
names your 100 workers find.

Instead of waiting for each of your workers to find all the matching names, you ask them to
hand you their list of names in sorted batches of 20 at a time. Each time you receive another
sorted 20 names, you inter-sort them with the other names you have already received and

THOR Executive White Paper December 1996, Rev. E-2 Page 16

THOR's Architectural Configurations

sorted. In this way, names are being sorted almost as fast as they are being found; there is no
significant delay between finding all the names and producing a sorted list. This is analogous
to another primary way THOR maximizes intra-query processing performance.

THOR's Architectural Configurations

Data Processing Nodes

Nodes In Hitachi’s THOR MPP Data Server™ architecture, the basic building block is a Data
Processing Node, simply referred to as a node. In the THOR system, a node is a complete
RISC-based computer system equipped with a processor and I/O subsystem that
interconnects to other such nodes. The processors and adapters are all connected via a local
PCI bus, and all are packaged together within a compact field-replaceable unit.

As noted earlier, the components have been selected to provide the maximum
price/performance, with high volume, off-the-shelf parts used wherever possible. The system
is designed to function in a normal office operating environment.

 The configuration within each processor node is shown schematically in Figure 6.

High-Speed Matrix Buses
SCSI Tape Drive

Four 4-GB SCSI Disk Drives
Up to 16 GB InternalPC

I B
us

Communication
Processor

64 Megabytes/second

PPC - 604

Ultra
SCSI

Ultra
SCSI

Standard DRAM DIMMs
64 - 512 MB

Figure 6. Processor node schematic

Two kinds of
nodes

There are two kinds of processor nodes, distinguished mainly by the software present on
them. Interface processor nodes (IPNs) connect THOR to the outside world through a high-
speed channel attachment. Database processor nodes (DPNs) are repositories for the data
and contain database query execution software.

THOR Executive White Paper December 1996, Rev. E-2 Page 17

THOR's Architectural Configurations

Unlike some other systems, THOR IPNs may also act concurrently as DPNs. Figure 7
illustrates a schematic of a possible IPN and DPN configuration.

DPN/
IPN

DPN DPN DPN

DPN/
IPN

DPN DPN DPN

DPN/
IPN

DPN DPN DPN

Adapter

Adapter

Adapter

Adapter

N
e
t
w
o
r
k

I
n
t
e
r
f
a
c
e
s

DPN/
IPN

DPN DPN DPN

Tape

Tape

Tape

Tape

Figure 7. Schematic view of THOR's IPN and DPN configuration

The node's
communication
processor

As indicated earlier, the dedicated communications processor connects the node to the
toroidal mesh backbone network. The communications processor has DMA access to the
memory and supports four simultaneous bi-directional links, for a total sustained bandwidth
of 64 Megabytes per node per second. The processor also functions as a router to
significantly offload the main processor.

Modules

Four nodes =
one module

Up to four nodes are packaged together into a module, which contains cabling attachments
and N+1 redundant power supplies. The module is the smallest stand-alone unit of a THOR
system; any THOR system must have enough module enclosures to contain all of its nodes.
A module supports a sustained bandwidth of 256 Megabytes/second.

The database system and the operating system operate together to distribute user data,
manage each node’s devices, process queries, and provide communications. This means that
all the components in the module operate at near linear scaleability as the nodes balance the
workload for data processing. To increase the processing power, simply add more modules to
the system and the workload capacity processing power will increase proportionally.

Towers

One to six
modules = one
tower

As shown in Figure 8, modules may be stacked into "towers” up to six modules high, and
towers may be interconnected to expand a THOR system still further. A tower with six
modules supports a sustained bandwidth of 1.5 Gigabytes/second. Although there is no
architectural limit to the number of towers, the present hardware system has been designed
to support up to twelve interconnected towers for a total of 288 nodes.

THOR Executive White Paper December 1996, Rev. E-2 Page 18

The Bottom Line

Figure 8. Data Processing Nodes, Modules and Towers

The Bottom Line

Introduction In this section, we summarize how installing THOR can benefit your bottom line. All ideas
here are based on information presented throughout this paper.

Ease of
integration into
your network

THOR can seamlessly integrate into an existing LAN system. This translates into maximum
immediate benefits with maximum retention of current investment, and minimal network
reconfiguration or data distribution.

Ease of
administration

THOR provides a variety of tools and technologies that eliminates some administration tasks
while speeding up most others. THOR also incorporates a number of features to ensure a
high RAS standard. This leaves system administrators with more time to support users,
improve reporting capabilities, and plan for future DBMS requirements—tasks worth more
to your business and more to your bottom line.

ODBC/
SYBASE
compatibility

THOR's full support for ODBC and SYBASE compatibility benefits your bottom line in
several ways.

• Compatibility enables you to migrate existing applications with a minimum of rewriting.
• Compatibility lets programmers pick up where they left off in implementing applications,

rather than making them start again in a new language.
• SYBASE compatibility ensures that any administrator with SYBASE experience already

knows a good deal about how to administer THOR.
• You won't have to hire a system administrator who needs to learn a whole new system

from scratch.

THOR Executive White Paper December 1996, Rev. E-2 Page 19

Who is Developing THOR, and Why?

Near-linear
scaleability

THOR's unique hardware and software design ensures that you can add processing power
only as you need it, and get full value for your investment. Buying more than you need in
anticipation of future needs is expensive, and keeps your capital tied up for long periods of
time. With THOR, this expense is incurred only when your DBMS needs grow beyond your
current capability, and only to the extent required.

In conclusion In summary, THOR was designed to address and resolve some of the most pressing issues
facing database managers and administrators today. As you continue your reading and
research in this important area of your business, we hope you will compare THOR to every
other system you review. We are confident that THOR will come out on top.

Who is Developing THOR, and Why?

Who THOR™ is being developed by Hitachi Computer Products (America), Inc. (HICAM), part
of the Hitachi family of computer and communications companies. Other companies in the
computer and communications group include Hitachi America, Ltd., Hitachi Data Systems
(HDS), and Hitachi Personal Computer (HiPC).

Why Fortune 1000 customers have always looked to Hitachi for leading edge hardware and
software solutions for other markets, such as large scale enterprise computers and data
storage. Hitachi recognized that these same customers are facing a new kind of challenge in
their data management strategies. These customers are awash in data. They have hundreds,
maybe thousands of independent data storage locations scattered throughout enterprise
networks. What they need is help turning their raw data into useful information.

Hitachi has chosen to participate in the VLDB market at this point because customers are
unhappy with the rate at which their database needs are being served, and have asked for our
help. Looking at the state of the database industry and its market, we agree with our
customers that their ability to respond to their customers’ needs, to become more
competitive, and thus to grow, is currently constrained by the available technology. By
drawing on its experience, Hitachi created a next-generation, object-relational database
system that allows customers to extract information from enterprise database systems while
maintaining current investments in hardware, software, and training.

Where Can I Learn More about THOR?

Phone If you would like more information about THOR™, you can contact Hitachi by telephone at
1-800-588-THOR (1-800-588-8467) or 408-588-3300.

Fax You can reach Hitachi by fax at any time. The number is 408-988-1279.

Internet Additional information is also available on the World Wide Web at
http://www.hicam.hitachi.com/thor.

THOR Executive White Paper December 1996, Rev. E-2 Page 20

Features and Specifications

Features and Specifications

The tables in this section describe THOR's hardware/software environment and basic features.

Table 1. THOR™ Hardware Specifications

HW Specifications Module (four nodes) Tower (24 nodes)

Model Number HI64 HI512
Memory 256 MB - 2 GB, ECC protected 1.5-12 GB, ECC protected
Total disk space 67.2 GB 403.2 GB

Network gateway
connections

up to 4 Fast-Wide SCSI-II up to 24 Fast Wide SCSI-II

Processors 4 of each of the following: 24 of each of the following:

• Power PC 604 RISC Processor
• PowerPC bus w/ 1MB Synchronous Cache RAM (SRAM)
• 32-bit PCI Bus
• Dual Ultra-Wide SCSI Buses
• up to 512MB 60ns EDO DRAM w/ECC protection
• Dedicated Communications Processor

I/O Node to Node communications:
• Toroidal interconnect topology
• Sustained bandwidth of 64 Megabytes/second per node

◊ Per module: 256 Megabytes/second total sustained bandwidth
◊ Per tower: 1.5 Gigabytes/second total sustained bandwidth

External Peripherals:
• One Fast-Wide SCSI II port per node

Internal Peripherals:
• One Fast-Wide SCSI II channel per node
• Four hard disk drives per node

Diagnostic Ports:
• One RS-232 Serial Port per node
• One Ethernet 10BaseT per node

Table 2. Summary of THOR Features

SQL Supported SQL and SYBASE TRANSACT-SQL – Supports stored procedures and triggers
– Full set of system administration tools

Database integrity Row-level concurrency control
Data types Supports SYBASE SQL Server data types
Security control Login and password – GRANT/REVOKE privileges – Views
Backup/recovery Full transaction logging (logical-mirrored) – Transaction roll-back and two-phase

commit – Backups (DUMP) on databases – Automatic recovery – RAID level 1
Networks supported All networks supported by SYBASE Open Server – Ethernet (TCP/IP) – Novell NetWare

LAN Workplace – Microsoft LANManager – IBM LAN Server
SYBASE Open Server
Interface

Supports SYBASE Data Workbench, APT Workbench, Report Workbench – Supports
SYBASE and Microsoft SQL Server-compatible 4GLs, gateways, and utilities

THOR Executive White Paper December 1996, Rev. E-2 Page 21

Abbreviations Used in this White Paper

Table 3. THOR Technology Parallel Features

Product/
Feature

THOR
SQL

objectManager

Data partitioning Hash

Indexing Hash

Isolation Yes

Parallel-Scan Yes

Parallel-Sort Yes

Parallel-Aggregate Yes

Parallel-Join Yes

Parallel-Recovery Yes

Parallel-Insert Yes

Parallel-Delete Yes

Abbreviations Used in this White Paper

ACID - Atomicity, Consistency, Isolation, and Durability
BLOB – Binary Large Object
DBMS – Database Management System
DPN - Data Processing Node
DSS – Decision Support System
IPN - Interface Processing Node
MPP – Massively Parallel Processing
OLAP – Online Analytical Processing
OLTP – Online Transaction Processing
OO – Object-Oriented
RAS – Reliability, Availability, and Serviceability
RDBMS – Relational Database Management System
SMP – Symmetric Multi-Processing
SQL – Structured Query Language
THOR – The Hitachi Object Relational Database System
VLDB – Very Large Database

