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1. Abstract
The design of Java relies heavily on experiences with programming languages past.  Major Java features, including
garbage collection, object-oriented programming, and strong static type checking, have all proven their worth over
many years.  However, Java breaks with tradition in its floating point support; instead of accepting whatever floating
point formats a machine might provide, Java mandates use of the nearly ubiquitous IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754-1985).  Unfortunately, Java’s specification creates two problems for numerical
computation:  only a strict subset of IEEE 754’s required features are supported by Java and Java’s bit-for-bit
reproducibility goals for floating point computation cause significant performance penalties on popular architectures.

Java forbids using some distinguishing features of IEEE 754, features designed to make building robust
numerical software by numerical experts and novices alike easier than in the past.  Only simple floating point
features common to IEEE 754 and obsolete floating point formats are allowed.

Legitimate differences exist among various standard-conforming realizations of IEEE 754.  For example,
the x86 processor family supports the IEEE 754 recommended 80 bit double extended format in addition to the float
and double formats found on other architectures.  In many instances, using the double extended format for
intermediate results leads to more robust programs. To support its “write once, run anywhere” goals, Java specifies
that only the float and double formats be used for intermediate results in numeric expressions.  For
recent x86 processors to emulate exactly a machine that only uses float and double entails a significant performance
penalty; over an order of magnitude degradation has been reported.  An analogous situation arises on architectures
such as the PowerPC that support a fused multiply accumulate instruction; Java semantics preclude using a hardware
feature that would usually give more accurate answers faster.  However, even numerical analysts do not need or
desire exact reproducibility in all cases. The disallowed x86 features were designed to allow numerically
unsophisticated programs to have a better likelihood of getting reasonable results.

To address these concerns, the Java dialect Borneo is able to express all required features of IEEE 754.
Borneo also aims to run efficiently on multiple hardware implementations of IEEE 754 and to allow convenient
construction of new numeric types.

2. Introduction
Since the development of FORTRAN in the 1950’s, floating point computation has been an important concern of
computer users.  Building on FORTRAN, later languages, such as ALGOL 60, provide more formal descriptions of
the syntax and semantics of valid programs.  However, due to the variety of architectures of the time, in ALGOL 60:

No exact arithmetic will be specified, however, and it is indeed understood that different hardware
representations may evaluate arithmetic expressions differently.  The control of the possible consequences of
such differences must be carried out by the methods of numerical analysis. [75]

Therefore, the same Algol 60 program compiled and run on different architectures can produce different
output due to varying range, precision, and other properties of a particular floating point format.  In such a
heterogeneous environment, a reasonable approach to cross-architecture portability is for a programming language to
express those operations common to all (or most) contemporary architectures.  This approach to supporting floating
point in programming languages persists even though only one floating point standard is currently widely used.

The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985) [4] was adopted in part to
diminish the diversity of floating point formats in use during the early 1980’s.  One of the standard’s design goals is
to

Encourage experts to develop and distribute robust and efficient numerical programs that are portable, by
way of minor editing and recompilation, onto any computer that conforms to this standard and possesses
adequate capacity. [4]

Since its introduction, IEEE 754 has become universally available on all significant microprocessors for
PC’s and workstations (Intel x86 line and clones, Motorola 68000 series, Power PC, HP PA RISC, SPARC, SGI
MIPS, and DEC Alpha, among others).  IEEE 754 provides numerous features advantageous both to the numerical
analyst and to the more casual programmer.  With a small amount of education, programmers could directly use and
benefit from IEEE 754 features now known only to experts. Even if not employed explicitly, many users could run
efficient numerical libraries written to exploit IEEE 754’s advanced features [25].
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Although the standard’s features are widely supported in hardware, these features are not supported in most
current programming languages, including Java, even though programming language support for IEEE 754 was
discussed before the standard was adopted [32], [33].  Even the recent ISO Standard for Language independent
arithmetic [52] does not call for full IEEE 754 conformance.  This lack of language support has not gone unnoticed
or unlamented [56], [96].  Availability of IEEE 754 features would allow more robust numerical programs to be
written more easily by both novice and expert programmers.  Due to the ubiquity and utility of IEEE 754, all IEEE
754 specific features should now be supported by programming languages.

2.1. Portability and Purity
Be thou as chaste as ice, as pure as snow, thou shalt not escape calumny.

Get thee to a nunnery, go.
—William Shakespeare, Hamlet, Act III, Scene i

Java [38] aims to provide “write once, run anywhere” portability by rigorously defining the semantics of the
language, specifying many details left to the implementor’s discretion in languages such as C [65] and C++ [89].
Intuitively, a portable program produces “the same” result on different platforms.  However, the meaning of “the
same” is not well defined when platform dependent details are exploited.  To finesse the problem of defining
portability, Sun has proposed “100% Pure Java” as an alternative metric.  Instead of measuring program portability
in terms of what it accomplishes, 100% Pure Java defines purity in terms of what features a program uses.  By
confining a program to a subset of Java’s features, purity is intended to predict portability.  However, many key
aspects of Java programming are platform dependent, from the characters that terminate a printed line to the size of
the GUI screen.  To work around such issues, Sun’s 100% Pure Java Cookbook [43] recommends using methods
provided in the Java standard library to query the environment.

While many microprocessors conform to the IEEE 754 standard, there is non-negligible variance among the
implementations.  For other properties that vary from system to system, Java provides an abstraction layer for
programmers to write portable code, for example, println  always generates the correct platform-dependent line
termination character and a LayoutManager  can be used to arrange GUI elements on different sized displays.

However, Java does not provide similar facilities to deal with legitimate differences among IEEE 754
conforming processors.  For example, there is no mechanism to determine the availability of the double extended
format.  Java’s least common denominator approach unnecessarily burdens the x86 with usually unneeded and
unwanted exact reproducibility [22].  As with other system-dependent properties, there should be established
mechanisms to query the capabilities of the floating point environment and use the resources appropriately, either for
exact reproducibility or better performance, while in all cases being predictable.

The spirit of the IEEE standard does not dictate rigid conformity; rather, the standard intends to “Enable
rather than preclude further refinements and extensions” [4].  Using a disciplined approach, such as explicitly storing
intermediate results, (with a few caveats) it is possible to achieve exact reproducibility with existing processors and
compilers.  Reproducibility may extract a price in terms of code clarity and speed.  The IEEE standard allows, but
does not mandate, exact reproducibility.  Often the speed of a calculation exceeds the importance of the exact result.
For example, a matrix multiplication routine tuned for a particular architecture and memory configuration can be
three to four times faster than naive triply-nested loops [8].  Hardware vendors spend considerable time and effort,
including hand coding assembly routines, to achieve these performance gains.  Code optimized for one architecture
when run on a different architecture can be slower than naive code on the second architecture.1  The answers from
the optimized routines are not exactly the same, but the great time saving is deemed worthwhile.  Therefore,
linguistically enforced exact reproducibility of scientific calculations across architectures is an impractical goal.

                                                          
1 A double precision matrix multiply tuned for the UltraSPARC I (32 floating point registers, 16K L1 cache, 512K
L2 cache) using PHiPAC [8] ran slower than naive nested loops on the Pentium Pro (8 floating point registers, 8K
L1 cache, 256K L2 cache) for square matrices smaller than 500x500.  For larger matrices, both programs have
comparable throughput.  For square matrices smaller than 200x200, PHiPAC matrix multiply tuned for the Pentium
Pro is approximately twice as fast as the naive code on the Pentium Pro and six times as fast as the UltraSPARC
code.
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2.2. Goals of Borneo
To correct Java’s existing floating point deficiencies, the Borneo language extends Java so it is able to express the
entire IEEE 754 floating point standard.  For the remainder of the document, occurrences of “the standard” refer to
the IEEE 754 Standard for Binary Floating Point Arithmetic [4].  The acronym JLS is used to refer to The Java™
Language Specification [38].  Borneo has a number of objectives:

1. Expressing all required and recommended IEEE 754 features.

2. Allowing convenient creation of user defined numeric types exploiting IEEE 754 features.

3. Minimizing changes to Java and the Java Virtual Machine (JVM) to ensure upwards compatibility.

Borneo’s primary goal is allowing all the required features of the standard to be expressed while
maintaining the existing advantages of Java.  If possible, the language extensions should also support the standard’s
many recommended features.  To achieve reasonable performance, processor specific features must be used.
However, in some cases, the programmer may need to sacrifice speed for reproducibility.  Since performance is
usually a concern, it must be possible to generate efficient executable code, including JVM bytecode and native
machine code.

For numeric programmers, the ability to add custom numeric types is quite useful; the language should be
extensible enough so that new numeric classes can behave like and be operated on as conveniently as built-in floating
point types.2  However, the language should not become so unwieldy that building compilers and related tools is
intractable.

Borneo preserves the semantics of existing Java programs.  A Java program, P, compiled and run under
Borneo semantics cannot be differentiated by a pure Java program from P compiled and run under Java semantics.
However, in general, a Borneo program can observe differences in behavior from the same program compiled under
Java and Borneo semantics.  Borneo compilers accept programs with both “.java ” and “.born ” extensions.
Although Borneo adds keywords not found in Java, these keywords are not available in Java programs with a
“ .java ” extension; Borneo programs must uses a “.born ” extension to access the new keywords.  All valid
“ .java ” programs are valid Borneo programs.  Where possible, Borneo uses existing Java language constructs to
preserve the flavor of Java.  The results of arithmetic operations do not depend on whether a program is interpreted
or compiled.  Finally, programs are not unduly penalized for unused features.

2.3. Brief Description of an IEEE 754 Machine
Before discussing the language extensions, the features of IEEE floating point relevant to Borneo are briefly
summarized.  The standard discusses these features in much greater detail and should be referred to for full
explanations.  The related standard IEEE 854 [18] gives the reasoning behind some of both standards’ design
decisions.

2.3.1. IEEE 754 Floating Point Operations and Values
Certain capabilities in the standard are required while others are optional but recommended.  The standard’s
arithmetic operations include base conversion, comparison, addition, subtraction, multiplication, division, remainder,
and square root.  One increasing popular extension to IEEE 754 is the fused mac (Multiply-ACcumulate) operation.
A fused mac multiplies two numbers exactly (no overflow, underflow, or rounding) and adds a third number to the
product, producing a single rounding error at the end.  A fused mac can give a different answer than chained multiply
and add operations on the same initial arguments.

IEEE 754 defines three relevant floating point formats of differing sizes; single double, and double
extended (see Table 1).3  The 32 bit single format is mandatory and the optional 64 bit double format is ubiquitous
on conforming processors.  Some architectures, such as the x86 and 68000 lines of processors, include support for a
third optional, but recommended, 80 bit double extended format.  For the remainder of the document, double
extended  refers to this particular 80 bit double extended format (other double extended formats are possible).
Wider formats have both a larger range and more precision than narrower ones.

                                                          
2 In fact, certain of the standard’s features were included specifically to construct new numeric types.  One strong
motivation for including directed rounding was to “Provide direct support for interval arithmetic at a reasonable
cost” [4].
3 The 40 bit single extended format used on some DSP chips will not be discussed.
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Table 1 — Constraints on IEEE 754 number formats.

Total size (bits) bits for p bits for E Emax Emin

single 32 24 8 127 –126
double 64 53 11 1023 –1022
double extended ≥ 79 ≥ 64 ≥ 15 ≥ 16383 ≤ –16382

The finite values representable by an IEEE number can be categorized by an equation with two integer
parameters k and n, along with two format-dependent constants N and K [56]:

finite value =n k N
¹

� �2 1 .

The parameter k is the unbiased exponent with K+1 bits.  The value of k ranges between Emin = –(2K–2) and
Emax = 2K–1.  The parameter n is the N-bit significand, similar to the mantissa of other floating point standards.  To
avoid multiple representations for the same value, where possible the exponent k is minimized to allow n to have a
leading 1.  When this “normalization” process is not possible a subnormal number results.  Subnormal numbers (also
called denormals) have the smallest possible exponent.  Unlike other floating point designs, IEEE 754 uses
subnormal numbers to fill in the gap otherwise left between zero and the smallest normalized number.  Including
subnormal numbers permits gradual underflow.

Floating point values are encoded in memory using a three field layout.  From most significant to least
significant bits, the fields are sign, exponent, and significand:

finite value � ¹ ¹1 20 5sign exponent significand.

For a normalized number, the leading bit of the significand is always one.  The single and double formats do not
actually store this leading implicit bit.  (The double extended  format explicitly stores this implicit bit so the
format is 80 bits wide instead of 79.)  Subnormal values are encoding with an out-of-range exponent value, Emin – 1.

Besides the real numbers discussed above, IEEE 754 includes special values NaN (Not a Number) and ±∞.
The special values are encoded using the out-of-range exponent Emax + 1.  The values ±0.0 are distinguishable
although they compare as equal.  Together, the normal numbers, subnormals, and zeros are referred to as finite
numbers.  Except for NaNs, if the bits of an IEEE floating point numbers are interpreted as signed-magnitude
integers, the integers have the same lexicographical order as their floating point counterparts.

NaN is used in place of various invalid results such as 0/0.4  NaN is needed to make floating point
arithmetic closed under the usual arithmetic operations.  Actually, many different bit patterns encode a NaN value;
the intention is to allow extra information, such as the address of the invalid operation generating a NaN, to be stored
into the significand field of the NaN.  These different NaN values can be distinguished only through non-arithmetic
means.  For assignment and IEEE arithmetic operations, if a NaN is given as an operand the same NaN must be
returned as the result; if a binary operation is given two NaN operands one of them must be returned.

The standard defines the comparison relation between floating point numbers.  Besides the usual, >, =, and
<, the inclusion of NaN introduces an unordered relation between numbers.  A NaN is neither less than, greater than,
nor equal to any floating point value (even itself).  Therefore, NaN > a, NaN == a, and NaN < a are all false.
A NaN is unordered compared to any floating point value.

By default, an IEEE arithmetic operation behaves as if it first computed a result exactly and then rounded
the result to the floating point number closest to the exact result.  (In the case of a tie, the number with the last
significand bit zero is returned.5)  While rounding to nearest is usually the desired rounding policy, certain
algorithms, such as interval arithmetic (see section 6.4.7), require other rounding conventions.  To support these
algorithms, the IEEE standard has three additional rounding modes, round to zero, round to +∞, and round to –∞.
The rounding mode can be set and queried dynamically at runtime.

                                                          
4 The standard actually defines two kinds of NaNs, quiet NaNs and signaling NaNs.  Since they cannot be generated
as the result of an arithmetic operation, Borneo ignores signaling NaNs and assumes all NaNs are quiet.
5 The VAX uses round to nearest, but in the case of a tie always rounds toward zero.  This adds a slight statistical
bias to computations and causes troublesome drift in some calculations.
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2.3.2. IEEE 754 Exceptional Conditions
When evaluating IEEE 754 floating point expressions, various exceptional conditions can arise.  The conditions
indicate events have occurred which may warrant further attention (although Java omits flags are forbids traps). The
five exceptional events are, in decreasing order of severity,

1. invalid , NaN created from non-NaN operands; for example 0/0 and �1 0. .
2. overflow, result too large to represent; depending on the rounding mode and the operands, infinity or the most

positive or most negative number is returned.  Inexact is also signaled in this case.
3. divide by zero, non-zero dividend with a zero divisor yields a signed infinity exactly.
4. underflow, a subnormal value has been created.
5. inexact, the result is not exactly representable; some rounding has occurred (actually a very common event).

The standard has two mechanisms for dealing with these exceptional conditions: sticky flags and traps.
Flags are mandatory.  Although optional, trapping mode is widely implemented on processors conforming to IEEE
754 and therefore has support in Borneo.  The mechanism used for each exceptional condition can be set
independently.  In this document, signaling a condition refers to either setting the corresponding flag or generating
the appropriate trap, depending on the trapping status.  When sticky flags are used, arithmetic operations have the
side effect of ORing the conditions raised by that operation into a global status flag.  The sticky flag status can also
be cleared and set explicitly.  When a condition’s trap is enabled, the occurrence of that condition causes a hardware
trap to occur and a trap handler to be invoked.  The standard requests that the trap handler be able to behave like a
subroutine, computing and returning a value as if the instruction had executed normally.

Trapping mode requires some additional information beyond notification of an exceptional event.  For
trapping on overflow and underflow, the trap handler is to be able to return an exponent-adjusted result, a floating
point number with the same significand as if the exponent range were unbounded but with an exponent adjusted up
or down by a known amount so the number is representable.  Instead of allowing users to specify their own trap
handlers, Borneo integrates trapping on floating point operations into the existing Java exception mechanism.
Therefore, it is not possible to return to the location which caused a floating point trap.  Methods of the overflow and
underflow exceptions return the exponent-adjusted result.  A single operation can cause both overflow and inexact or
both underflow and inexact to be signaled.  If both of the involved conditions are being trapped on, overflow and
underflow take precedence over inexact.

Underflow is signaled differently depending on the trapping status.  If trapping on underflow is enabled, any
attempt to create a subnormal number will cause a trap.  In non-trapping mode, only a subnormal result that is also
inexact will raise the underflow flag.  A common feature of processors implementing IEEE 754 is a non-conforming
flush to zero mode where all subnormal results are replaced with zero.  It is considerably easier to make flush to zero
fast in hardware than to make gradual underflow fast.

2.3.3. Java floating point conformance
Java’s float  type corresponds to the IEEE single format and Java’s double  type corresponds to the double
format.  Java specifies that all arithmetic operations occur under the round to nearest rounding mode6 with no facility
to change rounding modes.  In Java, non-trapping mode is always on; floating point operations cannot throw
exceptions and there is no mechanism to inspect or clear the sticky flags.  Since a Java program does not allow
inspection of the flag state, there is no obligation for a Java compiler to maintain the flags in a state consistent with
all portions of the program having been executed.  In particular, compile time optimizations such as constant folding
can be performed without regard to side effects to the flag state.  Borneo includes the IEEE 754 features lacking in
Java (shown in Table 2) while adding awareness of the interplay between rounding modes, status flags, and
evaluating arithmetic expressions.

                                                          
6 When converting a floating point number to an integer, Java rounds toward zero instead of to nearest, the same
behavior as FORTRAN and ANSI C.
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Table 2 — Java’s IEEE 754 conformance.

IEEE Features Status in Standard Java Conformance
directed rounding required ([4] §4.1, §4.2) explicitly forbidden (JLS §4.2.4)
sticky flags required ([4] §7) omitted from specification
floating point exceptions (trapping mode) recommended ([4] §8) explicitly forbidden (JLS §4.2.4)
extended floating point formats recommended ([4] §3.4) omitted from specification
non-signaling comparison operators recommended ([4] §5.7) omitted from specification

fused mac not part of IEEE 754 omitted from specification

The standard also recommends an IEEE 754 environment include several utility functions that perform
basic tasks on floating point numbers.  Java currently includes two of the ten recommended functions; Borneo adds
the rest.  The additional methods include nextAfter , scalb , and logb .  The nextafter  function can be used
to find the floating point numbers adjacent to a given floating point number, useful for perturbing data and defining
floating point constants.  The scalb  function scales a floating point number by a power of two (in effect scalb
attempts to change the exponent of a number but not its significand).  Scaling a number this way can lose precision if
the result is subnormal; therefore, scalb  could be affected by the dynamic rounding mode.  It is also possible to use
so large or so small a scaling factor that the result cannot be represented, even using a wrapped exponent.  However,
the standards’ descriptions of the recommended functions are terse and the standards do not specify the desired
behavior in these extreme cases.  Also, IEEE 754 and 854 give different specifications for the behavior of logb  on
subnormal arguments.  The logb  function returns the unbiased exponent of a floating point number.

2.4. Language Features for Floating Point Computation
While support for floating point computation in programming languages has long been commonplace, the details of
floating point support have often been overlooked in language specifications.  In the following sections, issues
related to floating point support are identified and the ways Java and Borneo address these needs are discussed.  For
further information, appendix 9.3 catalogs the variations in how notable languages support floating point.

2.4.1. Decimal to Binary and Binary to Decimal Conversion

The [Windows 3.1] calculator program that Microsoft includes with every copy of Windows makes math
errors…  If you try to subtract 2.00 from 2.01, it gives an answer of 0.00.  And it mishandles other numbers
ending in .01.  Microsoft knows of the problem, but doesn’t plan to fix it until the next version of Windows
ships next year (unless consumers raise a hue and cry). [Walter S. Mossberg, Wall Street Journal Thursday
December 15, 1994, B1]

Microsoft to Fix a Flaw In Windows 3.1 Calculator
REDMOND, Wash. – Microsoft Corp. said it will offer software that fixes a flaw in the calculator portion of
its Windows 3.1 operating system. The company said the software is being developed in response to a
column in this newspaper.  [Wall Street Journal, Monday December 19, 1994, B9]

Since nearly all computer arithmetic is in binary while floating point literals are in decimal, base conversion must be
done to enter or display floating point numbers.  While finite-length integer values can always be converted without
loss of precision between different bases, in general, finite-length fractional values cannot.  A fraction finitely
representable in one base may be an infinitely repeating fraction in another.  For example, in base 3 one third is just
0.1 as opposed to 0.33333… in base 10.  Matula [69], [70] discusses necessary and sufficient conditions for lossless
base conversion.  Reading in and displaying floating point values provides the main interface between users and
floating point numbers; if base conversion is suspect, the correctness of the remaining floating point infrastructure is
obscured.

Recognizing that a decimal floating point number may not have an exact binary representation, a reasonable
expectation is that the closest binary floating point number is used instead.  Any floating point base conversion
algorithm having this property is correctly rounded.  However, many language standards do not require correctly
rounded decimal to binary conversion (nor does IEEE 754 in all cases).7  Since decimal representations of floating

                                                          
7 The standard does give constraints on base conversion.  For a wide range of values, the conversion must be
correctly rounded.  The IEEE 754 committee expected base conversion to be included in floating point co-processors
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point numbers can be used on computers adhering to different floating point standards, correctly rounded binary to
decimal conversion is important for portability across heterogeneous floating point systems.  Having different results
from compile-time and runtime conversion of literals can also lead to inconsistent results.

Although published algorithms exist for both correctly rounded input [12] and output [87], conversion
problems persist.  Correctly rounded algorithms are also acceptably fast for common cases [11], [34].  While
working on the BEEF tests for transcendental functions, it was discovered that the Turbo C 1.0 compiler did not
convert “11.0 ” exactly into a floating point number equal to 11 [67]!  Unrelated to the infamous Pentium divide
bug, the calculator that for years shipped with Microsoft Windows 3.1 produces misleading output for some
calculations.  Due to a bug in a Microsoft library function, under certain circumstances a value of 0.01 is displayed
as 0.00 [68].  The correct value is stored internally; only the display is faulty.  First reported in Infoworld in late
November 1994, the bug only received widespread attention after being published in the Wall Street Journal column
excerpted above.

2.4.2. Floating Point Types
An IEEE 754 compliant architecture can support as few as one floating point format or as many as four different
IEEE formats.  In practice, IEEE 754 architectures either support two formats (single and double) or three (single,
double, and double extended8). Other floating point standards also have defined multiple formats; the VAX
eventually had four formats, one 32 bit format, two 64 bit formats, and one 128 bit format.  Most programming
languages have at least one “built-in” floating point type.  Since the number of language floating point types may not
match the number of available hardware floating point formats, some constraints on the language type to hardware
format mapping are required.

New floating point types may also be created, either as totally user-defined types or possibly as subsets or
subranges of existing floating point types.

2.4.3. Expression Evaluation
Many familiar laws of arithmetic (associativity of addition and multiplication, distributivity of multiplication over
addition, etc.) do not hold for floating point computation.  However, language standards may allow optimizing
compilers to transform floating point expressions in non-equivalence preserving ways (that hopefully execute faster).
Some compilers have documented options that list which rules of arithmetic are broken at different optimization
levels.  For example, the Sun cc compiler’s “-fsimple=2 ” allows x/y  in a loop to be replaced by x * z  where
z = 1/y if y  has a constant value during the loop execution.9  A few compilers may even ignore parentheses
while evaluating expressions.

Numerous calculations can fail due to overly aggressive optimization.  For example, in

X = (X + b) – b

if X is as large as the few least significant bits of b, a kind of rounded version of X is calculated.  If the subtraction is
done first instead of the addition, the value of X does not change.  Another common idiom where order of evaluation
can be crucial is

Z = (a*X)*Y

The values of X and Y may vary widely with scaling factor a ensuring that overflow and underflow do not occur.  If
instead the expression is evaluated as

                                                                                                                                                                                          
so correctly rounded conversion was not required over the entire range of floating point values due to
implementation difficulties [59].
8 The 80 bit double extended  format is widely implemented in hardware.  Another extant IEEE double
extended format, 128 bit quad, has instruction level support in some architectures.  However, on existing processors
implementing such architectures, the actual quad operation trap to software.
9 x/c  may not be equivalent to x * (1/c)  in several ways: if 1/c  is not exact, multiplying by the reciprocal
causes two rounding errors instead of a single rounding error for the divide and 1/c  may overflow when x/c  does
not.  The two forms can also cause different exceptional conditions.  If the numerator and denominator are both zero,
x/c  generates invalid while x * (1/c)  generates divide by zero and invalid (both expressions evaluate to NaN).
If c  is very small, 1/c  can overflow to infinity (never yielding a normal product) while x/c  can result in a normal
number.
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Z = a*(X*Y)

exceptions designed to be avoided may occur.  Alternatively, (a*X) may be an exact calculation, with the only
rounding error introduced by the second multiplication; using a different evaluation order can increase the
calculation’s rounding error [59].

For predictable floating point behavior, a language must respect parentheses and not treat computations that
are mathematically equivalent on infinitely precise real numbers as computationally equivalent on limited precision
floating point numbers.  For example, while multiplication of real numbers is associative, multiplication of floating
point numbers is not associative.  To scrupulously support IEEE 754, optimizations cannot change the sticky flags
set or floating point traps caused by evaluating an expression.  Other optimizations, such as common subexpression
elimination, must be aware of dynamic rounding and trapping modes.  However, at times it is also desirable and
warranted to sacrifice floating point fastidiousness for increased speed.

In the evaluation of numeric expressions of more than two terms, temporary values are needed to hold the
intermediate results.  Since these anonymous temporary values are not explicitly declared by the programmer, some
convention is needed for determining the types of these locations.  Expression evaluation rules are usually more of an
issue if a language has multiple floating point types.  A related issue is what coercions can be implicitly performed
by the compiler. In addition to coercions in expression evaluation, implicit coercions between floating point types
may occur during assignment and parameter passing.  Several conventions for the typing of anonymous floating
point values have been used:
1. strict evaluation:  If the two operands are of the same type, the result is of that type.  If the two operands are of

different types, the “narrower” of the two operands is converted to the type of the “wider” operand and the final
result is the type of the wider operand.  Strict evaluation is used in Java and ANSI C, among other languages.
Strict evaluation allows the compiler to easily determine the types of intermediate results since only the types of
the operands need to be determined; no other environment needs to be consulted.

2. widest available:  Some hardware platforms, such as the x86, have a preferred floating point format that runs
more naturally than other formats.  In the widest available strategy, this type is used for all intermediate
expression evaluation.  For example, in pre-ANSI C, all floating point expression evaluation takes place in a
platform-dependent double  precision even if all the operands are float .  In widest available evaluation,
expressions are often calculated in a higher precision than the input data.  This policy can prevent
unsophisticated numerical expressions from misbehaving while also achieving good hardware utilization.

3. scan for widest (widest needed):  In scan for widest, the expression is scanned to find the widest numeric type
present (including the width of the destination in an assignment), then all leaves of the expression tree are
coerced to the widest type.  The intention of scan for widest is to use as much program context as possible to
determine the most appropriate sizes for temporary values.  However, scan for widest complicates determining
what types intermediate results should have.  Scan for widest has been partially implemented in a modified
FORTRAN compiler [24].

2.4.4. Converting between floating point and integer
Languages differ in evaluation rules for mixed integer and floating point expressions.  Some have implicit coercion
of integers to floating point, others do not. Additionally, when converting floating point numbers to integer, a variety
of rounding conventions may be used.

2.4.5. Floating Point State
The IEEE 754 standard defines several pieces of floating point state, the dynamic rounding mode, the current
trapping status, and the value of the sticky flags.  To fully support the standard, a language must have mechanisms to
query and set these values.  Some languages have defined their own floating point state variables.  For example, in
later versions of APL (see section 9.3.2), a program-wide comparison tolerance can be set.

2.4.6. Operator Overloading
Operator overloading is a common language feature allowing programmers to define and call infix functions.  Some
languages only allow a certain set of built-in operators to be overloaded; others allow novel user-defined operators as
well.  Often there are restrictions on operators acting on user-defined and built-in types, such as at least one argument
must be a user-defined type.  For user-defined types, operators may be defined to convert one type to another.  Since
user-defined types using operators are often numeric types, interaction with built-in numeric literals is important.
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New numeric types usually have value semantics, that is, each “number” should not share state with any
other number.  An easy, but inefficient, way to implement these semantics is to always make a copy of the number
object during assignment, parameter passing, and function return.  For efficiency reasons, making unnecessary copies
of objects should be avoided.

2.4.7. Java and Borneo
Java:  A simple, object-oriented, network-savvy, interpreted, robust, secure, architecture neutral,

 portable, high-performance, multithreaded, dynamic language.
—Sun’s buzzword compliant description of Java

Originally called Oak, the Java language is touted as the language for programming the Internet.  To support its
“write once, run anywhere” goals, Java strictly defines many aspects of the language left undefined or
implementation dependent in other languages, such as C.  Thread scheduling and the order finalize  methods are
called for garbage collected objects are not rigidly defined by the Java specification.

Java requires correctly rounded decimal to binary and binary to decimal conversion (JLS §3.10.2, §20.9.16,
§20.9.17).  Java has two floating point types, float  and double , which correspond exactly to the IEEE 754 single
and double formats.  It is a compile time error to have floating point literals exceed a format’s range.  The strict
evaluation policy is used for expression evaluation; implicit widening conversions occur between integer and floating
point types.  Rounding to zero is used for converting floating point numbers to integer.  Parentheses must be
respected, implicit right to left evaluation must be followed, and optimizations must preserve both the value and
observable side effects of floating point expressions.  However, since Java semantics do not include the IEEE sticky
flags or exception handling, optimizations that would change these properties are legal in Java.  While requiring
IEEE 754 numbers, Java does not support all IEEE 754 features.  Using non-default rounding modes is explicitly
forbidden as are floating point exceptions (JLS §4.2.4).

Java does not have any operator overloading facilities but method calls are overloaded.
Borneo adds support for all IEEE 754 features while maintaining upwards compatibility with Java.

Building on Java’s specification, Borneo maintains Java’s base conversion requirements and extends the side effects
of floating point expression evaluation to include the IEEE 754 sticky flags and exceptions.  By default, Borneo uses
strict evaluation for expressions, but a block-level language declaration allows widest available to be used instead.
In addition to float  and double , Borneo’s indigenous  type designates the double extended  format on
processors supporting that format (and designates double  elsewhere).  Even though the indigenous  type varies
from platform to platform, a Borneo program remains predictable even if not exactly reproducible.

Borneo has declarations to express IEEE 754 features in a convenient, structured manner.  Dynamic
rounding modes are controlled by a lexically scoped declaration.  Sticky flag behavior is included in a method’s
signature.  Borneo also has a new control construct based on sticky flags in addition to library methods to access the
sticky flags directly.  A scoped language declaration allows floating point exceptions to be thrown.  The Borneo
library includes all the IEEE recommended functions.

Operator overloading in Borneo allows the creation of user-defined numeric types that can be used nearly as
conveniently as the built-in primitive floating point types float  and double .  Avoiding past complications,
operators on primitive types may not be redefined, but novel operators may be introduced.  A programmer can also
include existing operators in a new class.  The text of an operator indicates its precedence and associativity.

Borneo programs end with a “.born ” extension instead of the “.java ” extension used for Java programs.
A Borneo compiler also accepts Java programs, but to avoid name clashes, Borneo specific keywords are not
recognized as keywords in Java programs.  A Java program compiled with a Borneo compiler is compiled with
Borneo’s floating point semantics; some floating point optimizations legal in Java are not performed by Borneo.

3. Future Work

3.1. Incorporating Java 1.1 Features
The current version of Borneo is based on Java 1.0 as described in JLS.  Java 1.1 adds a number of new language
features, such as inner classes, as well as many new libraries and interfaces.  Borneo has a third floating point type,
indigenous , not present in Java.  The indigenous  type varies across platforms; it is double extended
where that format is supported in hardware and double  elsewhere.  The addition of indigenous  necessitates
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changes to a number of Java 1.1 features including the Java Native Interface, object Serialization, reflection, and
Remote Method Invocation.  The Java Native Interface to call native code must be extended to include the
indigenous  type.  Additionally, since indigenous  values are platform dependent, they cannot be serialized
with the default serialization; custom readExternal  and writeExternal  methods need to be provided in the
Indigenous  class (analogous to the Float  and Double  classes).  Therefore, the Indigenous  class should
implement the java.io.Externalizable  interface instead of the java.io.Serializable  interface.  A
new Class  object must be created to represent indigenous  in the reflection API.  The Remote Method
Invocation facilities also need to be updated to properly incorporate transmitting indigenous  values.

3.2. Unicode Support
The Unicode character for infinity, ∞=0x221E, could be used to designate an infinity literal, but due to the lack of
widespread Unicode support, having that character alone serve as a literal for infinity is not sufficient.10

The Unicode standard includes a number of mathematical operators (characters 0x2200 to 0x22FF), some
of which could be useful for operator overloading.

3.3. Flush to Zero
Instead of gradual underflow, some processors can “flush to zero” small values.  This flush to zero mode is
non-IEEE 754 compliant but runs much more quickly on processors with this feature.  Like Java, Borneo requires
that gradual underflow be used at all times.

3.4. Variable Trapping Status
Currently in Borneo whether or not an exceptional condition is trapped on in a section of code is a static property of
the program.  To fully emulate processors which have trapping status as a dynamic property, some mechanism is
needed to allow the trapping status of a section of code to be varied at runtime.  One possibility is to allow an
enable  declaration (section 6.8.1.3) to take an integer argument, analogous to a rounding  declaration (section
6.7.2).  It must also be possible to query the dynamic trapping status.  For example, to implement a class that fully
models the behavior of the double extended  format, it is necessary to query the dynamic trapping status.

3.5. Parametric Polymorphism
Among the new floating point types proposed for the Borneo library, some would have very similar code.  For
example, classes representing exponent extended floating point numbers, WideExpFloat , WideExpDouble , and
WideExpIndigenous  would be nearly identical except for the base floating point type used.  Templates or some
other parametric polymorphism facility could relieve the tedium of maintaining many similar numeric types.

4. Conclusion
I hate quotations.  Tell me what you know.

—Ralph Waldo Emerson

While programming languages do not explore a very large design space for floating point support, the details from
language to language and compiler to compiler often differ.  Important issues such as correctly rounded base
conversion are often not even acknowledged in language standards.  More recent languages, such as Java, are aware
of IEEE floating point and related issues, but often do not guarantee full support. Borneo extends Java to
incorporates IEEE 754 features in a structured manner, allowing both the compiler and the programmer to reason
about the code.

Borneo largely preserves both the syntax and semantics of Java; the same source code under Borneo has
nearly identical semantics as under Java.  Java’s existing exception handling mechanism is augmented to deal with
floating point exceptions.  New scoped declarations are added to control rounding mode and flag state.  By default, a
Borneo program is subject to less aggressive constant folding and related optimizations than the same program under
Java, but the small loss of local optimizations is accompanied by the ability to write much faster, more robust

                                                          
10 Similarly, Unicode could even be used to denote a NaN literal by using the Mandarin homophone =0x96E3
(which means difficult).
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algorithms.  Borneo follows the letter and the spirit of IEEE 754, supporting the creation of portable, predictable
numerical programs.
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6. Borneo Language Specification
The remainder of this document presents the Borneo language specification in terms of changes to Java (section 6)
followed by changes to JVM, the Java Virtual Machine, (section 7), and changes to classes in the java.lang
package (section 8).  Section 7 does not give all the necessary details for the JVM changes to be implemented; for
example, while the behavior of new instructions is described, opcode assignments are not given.  Familiarity with
Java and JVM is assumed.  Borneo is based on Java 1.0; updating Borneo to incorporate Java 1.1 features is left for
future work.

Most second level headings in section 6 directly correspond to new language features.  The new language
features usually address an IEEE 754 capability lacking in Java; however, other sub-sections, such as operator
overloading, deal with language features not directly tied to IEEE 754.  For each language feature, first the
requirements of using the feature are introduced, followed by a presentation of Borneo’s specification for that
feature, and concluding with a discussion of alternatives and rationale, often with some examples illustrating
intended usage.

The examples and discussion of processors assume an IEEE 754 compliant processor with dynamic
rounding modes and dynamic trapping status.  The Alpha architecture [83] can encode some rounding modes
statically in a field of a floating point instruction; the interaction of this feature with Borneo semantics is noted on a
number of occasions throughout the text.

6.1. indigenous

Allow me to introduce you to Ceti Alpha V’s only remaining indigenous lifeform…
You see, their young enter through the ears, and wrap themselves around the cerebral cortex.

This has the effect of rendering the victim extremely susceptible to suggestion.
—Khan Noonian Singh, Star Trek II: The Wrath of Khan

Borneo adds many new floating point types to Java.  One of those types, indigenous , is a new primitive type
similar to float  or double .  The other types are new standard library classes which use Borneo’s operator
overloading facilities.  The indigenous  type is used by Borneo to represent the double extended  format on
the x86.  On most other platforms, indigenous  is another name for the double  format.  The next section
motivates having any representation of the double extended  format.

6.1.1. Requirements
A language designed to support floating point computation should allow the full capabilities of the underlying
floating point hardware to be exploited.  The x86 family comprises a large majority of desktop computers
worldwide, so from a practical standpoint, supporting that processor line reasonably well is especially important.

On the x86, double extended  is the most natural format for the processor to work in.  Forcing an x86
to act as if it only supported single and double in all cases significantly restricts the speed of the x86.  By setting a
control word, the x86 can be made to round to float or double precision, but that rounding only curtails the
significand, not the exponent range; the exponent range is the same as the wider double extended  format.11  To
make the x86 round a register’s exponent as well, it is necessary to issue a store to the appropriate format followed
by a load back into the register.  Such extra loads and stores have the unfortunate side effect of slowing the floating
point engine due to increased memory traffic and additional dependencies between instructions limiting instruction
level parallelism.  While the extra stores make the x86 round properly with respect to the overflow threshold of the
narrower formats, extra stores alone do not make the x86 implement the double  underflow threshold exactly.12

Essentially, for the underflowed value, the store to memory rounds the value a second time (the first time was during
the calculation).  This double rounding can give slightly different answers than a single rounding to the final format
when the calculation is initially performed.  The difference can be ≈10-324 for double  numbers.

                                                          
11 This style of rounding is part of IEEE 754 (§4.3).  The intention of rounding only the significand is to avoid
overflows and underflows in calculations that have extreme intermediate results but a undistinguished final result
[59].  Unlike the x86, the rounding width control on the 68000 rounds both significand and exponent [74].
12 Setting the rounding precision to double  or double extended  keeps enough precision so that when values
are stored to float  and loaded back, no double rounding differences occur [45].
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Figure 1 — Example to illustrate double rounding problems.

On an x86, when a double  number is stored in a double extended  register rounded to double ,
exponent values that would indicate subnormal double  numbers are normal numbers in double extended .
Since subnormal numbers effectively have fewer significand bits extra bits of precision can be present if the
exponent is not also rounded.  Figure 1 shows how the differences in value can arise.  In this example, the exponent
(not shown) is four less than the true double  underflow threshold.  If strict rounding to double  were performed,
the value of the significand to full precision would be

1.0…00010000
(the last four zeros would not be represented in the format) while rounding only the exponent gives a different value,

1.0…00011000
On overflow or divide by zero a single infinity value is generated, so there is not a corresponding rounding

problem since infinities are not affected by rounding when converted between formats.  To get exactly the same
answer, extra work is necessary on each floating point operation.  The approach taken in [36] is to store after an
operation (to round the exponent) and then test the inexact flag to see if double rounding occurred.  On numerical
kernels, this technique leads to slowdowns of over an order of magnitude compared to code that does not perform the
extra stores and does not test the inexact flag [36].  Another option is to still perform the store after each operation
and to trap on underflow, allowing an underflow trap handler to simulate the calculation on the original operands but
rounding the result to the smaller width.

To achieve floating point performance comparable to C or FORTRAN, Borneo needs a mechanism to run
the x86 using its double extended  registers without regard to small rounding differences.13

Independent of increased speed, programmers would benefit significantly from using the double
extended  type in their codes.  Some functions have singularities, either intrinsic or as an artifact of the
computation.  A region of the domain of the function maps to that singularity and values lying near that region have
less accurate answers computed.  However, usually if a computation is carried out using greater precision than the
input data (and returned result), the extra precision reduces the quantity of data affected by the singularity.  When the
11 extra significand bits of double extended  are used during the computation, double  input data is usually
about 2,000 times farther away from the problematic region, meaning loss of accuracy would typically occur about
2,000 times less often as well.  The double extended  format increases the chances that simple textbook
formulas will work over a sufficiently large subset of the range, leading to fewer situations requiring sophisticated
numerical analysis [57] (see section 6.10.1 for an example).  The double extended  format also allows better
algorithms to be used for certain problems, such as more accurate iterative refinement techniques for systems of
linear equations [62] and binary to decimal conversion [21].

6.1.2. Specification

FloatingPointType: one of
float double indigenous

FloatTypeSuffix: one of
f F d D n N

Figure 2 — Modifications to Java’s grammar to support Borneo’s indigenous  type.

Borneo adds indigenous  as a primitive floating point type and “indigenous ” as a keyword.  The size and
format of indigenous  are platform-dependent, corresponding to the largest floating point format with direct

                                                          
13 After this thesis was filed, Sun released a proposal describing possible modifications to Java’s floating point
semantics to ameliorate Java’s performance problems on the x86 architecture [91].  The proposal is discussed in
section 9.3.19.
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hardware execution on a given processor.   The type indigenous  corresponds exactly to either the IEEE 754
double  or double extended  format.  In Borneo, values of type float  and double  are widened to
indigenous  in the same contexts float  is widened to double  in Java (i.e., float  to indigenous , double
to indigenous , and long  to indigenous  are widening primitive conversions (JLS §5.1.2)).14   As with float
and double  in Java, if Borneo’s “+” operator is given a String  operand and an indigenous  operand, the
indigenous  operand is converted to a String  representing its decimal value.

Since Java floating point literals can be given a specific type, Borneo adds a new FloatTypeSuffix [nN] to
designate an indigenous  literal.  For example, in Java, “0.0 ”, “ 0.0d ” and “0.0D ” are double  literals;
“0.0f ” and “0.0F ” are float  literals.  The initial value for an indigenous  variable is 0.0n , an
indigenous  zero.  Figure 2 lists the modifications to Java’s grammar needed to support indigenous .  As in
Java, a Borneo literal without a type suffix is of type double .  In Java, floating point literals that exceed the
format’s range are caught as compile time errors.  Since the runtime range and precision of indigenous  are
platform-dependent, the range errors for indigenous  cannot all be detected at compile time.  Only indigenous
literals that exceed the range of double extended  are found during compilation.  indigenous  values that
exceed the range of double , but not double extended , do not cause a compile time error.  When used at
runtime, such values signal overflow and inexact or underflow and inexact if used on a machine where
indigenous  is the same size as double .  In general, use of an indigenous  literal may signal inexact.  Each
time an indigenous  literal is accessed, the signals associated with that conversion are raised.  For example, if a
literal is in a loop, the signals are raised on each iteration.  With some analysis, a Borneo implementation may be
able to avoid the full overhead of repeatedly converting a literal.  For example, if the conversion does not signal, the
value can be reused without recomputation.  If the inexact flag is not cleared during loop execution, the first loop
iteration with the conversion can be peeled and the converted value stored.  This avoids repeated conversions while
preserving the observable exceptional behavior.

Table 3—Primitive floating point types in Borneo

Name Size Type Suffix
float 32 bit, single precision f , F
double 64 bit, double precision d, D
indigenous processor dependent IEEE floating point

format, at least as large as double
n, N

Since the translation of indigenous  literals to binary cannot occur fully until runtime, the effective value
of indigenous  literals varies from platform to platform.  Borneo guarantees that the floating point value of an
indigenous  literal is the properly rounded result in the final floating point format, avoiding problems of double
rounding.  Rounding a literal string to double extended  precision at compile time, and then rounding the
resulting double extended  value to double  at runtime can give different results than a single rounding to
double  precision at compile time.  To avoid such inconsistencies, Borneo’s decimal to binary conversion
represents the binary form of an indigenous  literal as the sum of a double  and a float .  The combined
number of significand bits in a double  and a float  exceed the number of bits needed to correctly round a
double extended  value.  Therefore, simple floating point addition of the double  and float  values can be
used to generate the correct indigenous  result at runtime.  However, some additional testing and computation is
necessary to decode very large or very small indigenous  values.  The encoding used for indigenous  literals is
further discussed in section 7.1.

By definition, calculations on indigenous  values can differ from platform to platform.  If more uniform
answers are desired, the programmer can use float  and double  exclusively.  If the double extended  format
is truly needed at any price, the DoubleExtended  class (section 6.4.4) can be used.  Expressions including
indigenous  values are not considered constant expressions (JLS §15.27).  The calculation of final
indigenous  values cannot be done at compile time unless the indigenous  expression can be evaluated exactly
using double  precision.

                                                          
14 In general, byte , short , char , int , long , float , and double  can all be widened to indigenous  via a
widening primitive conversion.  The indigenous  type can be narrowed via a narrowing primitive conversion to
any of the other 7 built-in numeric types.
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Changes throughout the standard library are needed to support indigenous  properly, such as including
transcendental function methods in java.lang.Math  that take and return indigenous  values.  New
overloaded methods abs , min , and max that operate on indigenous  values are added to java.lang.Math .
The Java double  constants PI  and E have as indigenous  counterparts methods PI  and E which return
indigenous  values.  The new methods given in section 8.9 and section 8.10 are necessary to support the
indigenous  to String  conversion.

6.1.3. Alternatives
To avoid the current performance implications of Java on the x86, one could add double extended  as a basic
type.  However, since Java is designed to be portable, nearly all other hardware platforms would be forced to
perform a costly simulation of this type.  A program designed to use double extended  would run quite well on
an x86, but orders of magnitude slower on a SPARC.  Such unpredictability of performance is undesirable even if
the same numerical results are generated.  Using indigenous  circumvents creating this potential performance
problem by using the resources provided by a particular machine.

Although some IEEE 754 compliant architectures (SPARC, PA-RISC) have support for 128 bit quad
floating point computation, such quad length numbers are not a suitable candidate for indigenous .  While
currently such processors have opcodes for manipulating quad values, the actual operations trap to software and are
thus rather slower than operations on float , double , or double extended  numbers.  To implement
quad-word floating point operations on SPARC platforms, by default the GCC compiler generates function calls
specified in the SPARC ABI instead of using the hardware instructions since the function calls are considerably
faster than trapping [85].

Borneo chooses the somewhat lengthy name “indigenous ” since “native ” is already used by Java to
indicate methods written in other languages.  The keyword “indigenous ” has the same number of letters as C’s
“ long double ,” but “indigenous ” preserves the Java property that the names of all primitive types are one
token.  The shorter word “endemic ” was briefly considered but rejected due to its association with disease.

6.1.4. An indigenous  example
As shown in Figure 3, one use of indigenous  variables is storing intermediate calculations in the highest
hardware precision available so a more accurate answer can be calculated.

float dot(float[] a, float[] b)
{

indigenous sum = 0.0;

if(a.length == b.length)
{

for(int i = 0; i < a.length; i++)
{

// promote array values to indigenous  to preserve precision
sum += (indigenous)a[i] * (indigenous)b[i];

}
return (float) sum;

}
else

throw new IndexOutOfBoundsException("Tried to compute the dot product of two arrays of different size.");
}

Figure 3 — Using indigenous  in computing the dot product.

6.2. Floating Point Literals
The IEEE 754 floating point values NaN and infinity have no corresponding literals in Java.  The current techniques
to refer to these values have unwanted and unnecessary side effects.

Infinities and NaNs can be generated by the evaluation of an expression, such as 1.0f/0.0f  for a float
infinity.  The evaluation of such expressions can alter the floating point flag state of the program.  For example,
generating an infinity causes the overflow or divide by zero flag to be set.  Java’s Float  and Double  classes
include static final  fields assigned NaN and infinity values.  The expressions setting those fields do not have
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to be evaluated at runtime, so the running program’s flag state can remain unchanged; but names in another class
have to be referenced.  The methods Float.intBitsToFloat  and Double.longBitsToDouble  can be
used to indirectly create arbitrary floating point numbers since they return a floating point number with the same bit
pattern as the integer argument.  However, since the size of indigenous  varies from platform to platform and
since there is no integer type guaranteed to be as wide as indigenous , an arbitrary indigenous  value cannot be
portably or directly created from a single integer constant.

Augmented Java Syntax
FloatingPointLiteral:

infinity  FloatTypeSuffixopt

NaN FloatTypeSuffix

Figure 4 — Changes to Java grammar to support infinity , and NaN literals.

To allow special floating point values to be used easily for all primitive floating point types, Borneo has
floating point literals denoting infinity and NaN.  For clarity, Borneo chooses “infinity ” to represent infinite
values.  The string “inf ” was not chosen since in mathematics inf refers to the greatest lower bound or smallest
element of a set.  While “NaN” could be chosen to represent a NaN value, Float.NaN  and Double.NaN  are
existing static  fields in Java standard library.  To avoid name conflicts, Borneo NaN literals are represented as
“NaN” followed by a FloatTypeSuffix; so “NaNf ”, “ NaNd”, and “NaNn” are, respectively, float , double , and
indigenous  NaN literals.  Infinity literals can also have a FloatTypeSuffix with the usual interpretation.  A NaN
literal prefixed by “+” or “ - ” is a valid expression.  Floating point literals are available in all contexts without
qualification; therefore, “infinity  ” can be used instead of “Double.POSITIVE_INFINITY .”  Borneo adds
thirteen new character sequences denoting floating point literals (enumerated in section 9.5), but conflicts with
names in existing Java programs should be rare.

6.3. Float , Double , and Indigenous  classes
Much of the functionality and utility of a language is captured in the language’s standard library.  Therefore, along
with changes to Java proper, Borneo includes library modifications to aid in bringing Java to full IEEE 754
compliance.  The Java Float  class “wraps” the primitive type float  in an object and defines many useful
static  methods operating on float  values.  The Double  class has the analogous relation to the double  type.
Figure 5 and section 8.5 detail the specific changes Borneo makes to the Float  class.  The standard recommends a
number of functions acting on floating point values.  Java already includes two of the recommended functions as
methods in the Float  class (isNaN  and isInfinite 15), but fails to include six other useful methods that Borneo
adds (copySign , scalb , logb , nextAfter , unordered , and fpClass ).  However, Borneo adds the
remaining IEEE recommended functions to the Math  class to make better use of Java’s method overloading.  Full
specification of the IEEE 754 recommended functions taking advantage of Borneo features not found in Java is
given in section 8.8.  These methods make direct manipulation of the bit patterns of floating point values largely
unnecessary.  Borneo also includes a logbn  method, which differs from logb  in the treatment of subnormals.  The
scalb  method is comparable to ANSI C’s ldexp  and logb  is similar to ANSI C’s frexp .

Certain constants associated with the float  type, such as the maximum finite value, are also included in
Java’s Float .  By using nextAfter , logb , and a few simple floating point literals such as 1.0f , 0.0f , and
infinityF , all the current floating point constants in Float  can be defined in a format independent manner.  For
example, for any IEEE floating point type, MAX_VALUE is given by nextAfter(infinity,0.0)  for 0.0  and
infinity  of the appropriate type.  Such a specification is clearer than the current specification of particular bit
patterns (JLS §20.9.1–§20.9.5, §20.10.1–§20.10.5).  New constants describing the exponent range, rounding
threshold, and minimum normal value, are also added to Float  since those quantities also provide useful
information about the type.  The rounding threshold and minimum normal value are given in the <limits.h>  file
in ANSI C.  Corresponding changes are made to the Double  class (section 8.6).

An Indigenous  class modeled after Float  and Double  provides equivalent support for
indigenous .  Although the values of the static final  fields in Indigenous  are platform-dependent, the

                                                          
15 The standard actually calls for an isFinite  predicate instead of Java’s isInfinite .  isInfinite  is not
the logical negation of isFinite  since isFinite(NaN)  and isInfinite(NaN)  are both false .
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specification is platform-independent by using methodology described above.  An abstract  method
indigenousValue  is added to the Number class so that all subclasses of Number can be converted to one
another.  Since the size of indigenous  is platform dependent, Indigenous  does not have methods
corresponding to Float.floatToIntBits  and Float.intBitsToFloat .  The IEEE recommended
functions can be used to take apart and create arbitrary floating point values.  Indigenous  does include two
methods without counterparts in Float  or Double .  The method static double[]
decompose(indigenous value) takes an indigenous  value and returns a two-element array of double
floating point numbers encoding the argument in the same manner indigenous  literals are encoded in the constant
pool.  The second element of the returned array holds a float  number promoted to double .  The inverse
functionality is provided by static indigenous compose(double, float) .  A new constructor taking
an indigenous  value is also included in the Float , Double , and Indigenous  classes.

//New constants
public static final float MIN_NORMAL  = 1.17549435e-38f; // smallest normal number, defined as

// nextAfter(0.0, infinity)/(nextAfter(1.0,infinity) –1)

// equal to 22 – 2K where K = number of exponent bits –1
//Information about format
public static final float ROUNDING_THRESHOLD  = 5.960465e-8f; // the least positive number such that under round to nearest

// 1 + threshold ≠ 1, defined as
// nextAfter((nextAfter(1.0, infinity) – 1.0)/ 2.0, infinity)

public static final int SIGNIFICAND_WIDTH = 24; // width of significand including possible implicit bit
// defined as –logb(nextAfter(1.0, infinity) –1.0)+ 1

public static final int MIN_EXPONENT = –126; // smallest (most negative) exponent of a normal number,
// defined as (int)logb(MIN_NORMAL)

public static final int MAX_EXPONENT = 127; // largest exponent of a normal number
// defined as (int)logb(nextAfter(infinity,0.0))

public static final int BIAS_ADJUST = 192; // amount by which exponent is adjusted in trapping on
// overflow or underflow, defined as
// 3·2n-2 where n is the number of bits in the exponent
// BIAS_ADJUST can be calculated by
// (int)(3.0 *
//   scalb(2,(int)(ceil(log( logb(MAX_VALUE))/log(E)) –2) ))

//New methods
public indigenous indigenousValue(); // for symmetry with other primitive types

//New Constructor
public Float(indigenous value);

//Constants to modify
public static final float MIN_VALUE = 1.4e–45f // defined as nextAfter(0.0, infinityF)
public static final float MAX_VALUE = 3.4028235e+38f // defined as nextAfter(infinityF, 0.0)
public static final float POSITIVE_INFINITY = infinityF;
public static final float NEGATIVE_INFINITY = –infinityF;
public static final float NaN= NaNf;

Figure 5 — Changes to the Float  class.

6.4. New Numeric Types
While the primitive floating point types are adequate for many purposes, other kinds of numeric types are useful in
certain circumstances. The classes described below use various IEEE features to implement numeric types
appropriate to different domains.  The exact specification for the new numeric types is not provided; their general
behavior and purpose is given.  All the numeric classes use Borneo’s operator overloading capabilities (see section
6.9).

6.4.1. PseudoInt
The significand field of a floating point number can be used to provide enhanced, fast integer arithmetic.  Such a
numeric type is useful for financial and accounting calculations.  Unlike Java’s modulo 2’s complement integers,
PseudoInt  indicates integer overflow by setting the inexact flag.  To achieve a wider range, indigenous  can be
used as the base floating point type.  On the x86, 64 bit signed-magnitude integers can be stored in the double
extended  floating point format.  PseudoInt  is similar to the comp type in SANE.
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6.4.2. Wide Exponent Types
Certain calculations, such as computing the determinant of a matrix of high dimension, can overflow or underflow
quite readily.  Often the ratio of two such determinants is computed; the magnitude of the two determinants is not of
direct interest.  To handle such situations, where greater range but not greater precision is needed, wide exponent
types are used.  WideExpFloat , WideExpDouble , and WideExpIndigenous  extend the base floating point
type’s exponent with a 32 bit integer.  The range of these types is so large that user-visible overflow or underflow
should occur extremely rarely when only basic arithmetic operations are performed.  Wide exponent types implement
the functionality of the KOUNT mode discussed in [56].  The basic approach to coding wide exponent types using
exceptions is covered in [40].

6.4.3. DoubledDouble
DoubledDouble  is a non-IEEE 128 bit format.  Instead of using 128 bits to store a single number,
DoubledDouble  uses the bits to represent the unevaluated sum of two 64 bit double  numbers (the sets of
powers of two represented by the two double  components do not have to be contiguous).  DoubledDouble  is
primarily useful on hardware with a fused mac instruction since that operation allows DoubledDouble  to run at a
reasonable speed.  See [84] for a detailed discussion of “multi-term” extra-precision floating point representations.

6.4.4. DoubleExtended
Depending on the platform, the indigenous  type can either be the 64 bit double  format or the 80 bit double
extended  format.  When exactly 80 bits must be used, the DoubleExtended  class explicitly implements 80 bit
double extended  floating point numbers.  On the x86 and 68000 architectures, DoubleExtended  should
refer to indigenous ; on other processors, DoubleExtended  must be implemented in software.  Techniques
similar to those used in SoftFloat [42] can be used to implement IEEE floating point numbers with integer arithmetic
in Java.

6.4.5. Extended
Analogous to the BigInteger  and BigDecimal  classes added in Java 1.1, the Extended  class provides IEEE
754 style numbers of arbitrary length.  A class variable controls the width to which current operations are rounded.
The C++ library SciLib [76] provides approximately the intended functionality of Extended .  At run time,
Borneo’s operator overloading can be used to build a data structure and dynamically determine the proper precision
to use.  For better speeds, operations on float  and double  length numbers could be recognized as special cases
and performed with the primitive floating point types.  Writing the transcendental methods for Extended  is a large
task since the best algorithm to use depends on the length of the number.

A 128 bit “quad” size floating point format is a special case of Extended .  Quad size floating point
numbers have some instruction-level support on current SPARC and PA-RISC architecture, but the actual operations
are performed in software.

6.4.6. ExtraPrecision

Table 4 — Various reasonable implementation options for the ExtraPrecision  class.

Architecture Format Processor Features
x86 80 bit double extended native floating point format

PowerPC, RS/6000 doubled double extensive use of fused mac instruction
SPARC quad existing instruction level or library support

ExtraPrecision  is a processor dependent floating point type, used when a modest amount of extra precision is
necessary at a modest price.  The fastest kind of floating point numbers larger than double  on a given platform are
used.  ExtraPrecision  is not necessarily an IEEE style number format.  Some reasonable implementation
options for different processors are listed in Table 4.  ExtraPrecision  could be implemented by referring to
other floating types already defined in the Borneo standard library.
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6.4.7. Interval
Instead of representing numbers as single points, interval arithmetic [2], [73] aims to bound the error in the result of
a calculation by representing each number as a range.  Directed rounding is used in interval arithmetic to obtain the
upper and lower bounds.  Interval arithmetic is useful for determining if a calculation is sensitive to roundoff and
should be rerun with additional precision to achieve the desired accuracy.  Since decimal to binary conversion is
often inexact, using a single value for a decimal floating point literal in interval arithmetic is not ideal.  Instead, as
with other interval operations, decimal to binary should return a non-trivial interval.  Therefore, the Interval
class includes methods such as Interval valueOf (String s)  to perform the necessary conversion.

6.4.8. ExtendedInterval
ExtendedInterval  combines the arbitrary precision of Extended  with the upper and lower bounds of
Interval .  One option for implementing ExtendedInterval  is to use two arbitrary precision numbers, one
for the upper bound and the other for the lower bound.  To save storage, one extended number (a midpoint) and a
range can be stored.  Such a variety of implementation options argue for users to be able to write their own interval
types to supplement the Borneo library interval types.

6.4.9. Complex and Imaginary Numbers
The textbook example of complex numbers as an abstract data type promotes real values to complex whenever the
two are combined.  Unfortunately, such promotion creates a zero imaginary component which has adverse
consequences for complex arithmetic in some applications; spurious overflows and underflows can occur and some
complex number identities are violated.  Using a separate imaginary type and the formulas discussed in [63] gives
fewer computational irregularities.  Example code for a portion of the Complex  class is listed in section 6.9.6.1.

6.5. Floating Point System Properties
Processor designers have created three distinct families of IEEE 754 compliant machines.  The first class of
machines takes a straightforward and orthogonal approach to implementing the standard; they provide float  and
double  formats and instructions to combine and manipulate numbers of those formats.  The SPARC architecture is
in this “orthogonal” category.

The RS/6000 and PowerPC take an alternative approach to realizing the standard and implement nearly all
floating point operations as special cases of a single ternary operation, fused multiply accumulate (fused mac).  A
fused mac multiplies two numbers exactly and then adds a third number to the product, generating a single rounding
error at the end (fused mac is not a part of the IEEE 754 standard).  Addition is fused mac with one of the factors set
to 1.0 .  Multiplication is a fused mac with the summand set to 0.0 .  Correctly rounded division is implemented by
a series of fused mac operations solving a recurrence [56].  A fused mac machine can easily simulate an orthogonal
family machine, but not vice versa.

The third architecture family is primarily comprised of the 68000 series and the x86 line; these machines
most naturally use double extended  values.  In principle, such a machine should be able to simulate the results
of a orthogonal machine easily, but some design choices of the x86 make that task very costly and subtle.

A hardware fused mac can give increased speed and improved accuracy.  In keeping with the goals of
Borneo, some access to fused mac is provided.  However, because simulating a fused mac on a processor without
that instruction is quite slow, the simulation should be avoided unless a fused mac is absolutely necessary for
correctness or reproducibility.

To inquire about other properties that vary from platform for platform, Java provides a number of system
properties that can be accessed through the System.getProperties  method (JLS §20.18.7).  To provide
information about floating point differences, as shown in Table 5, Borneo augments the list of system properties to
include whether or not a hardware fused mac is present.  Since floating point hardware is optional on Java chips [78],
the new fp.hardware  property specifies whether or not underlying hardware is used to run floating point.
Software implementation of IEEE 754 floating point is approximately 20 to 50 times slower than a hardware
implementation on the same processor.  The new system properties cannot be set by the user.  The size of the
hardware dependent indigenous  type can be determined from information given in the Indigenous  class.
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Table 5 — New system properties describing floating point.

Key Description of associated value
fp.fmac “ true ” if a hardware fmac is available, “false ” otherwise
fp.hardware “ true ” if floating point support is in hardware, “false ” otherwise

6.6. Fused mac
Although use of fused mac can lead to better answers for some codes (such as computing the dot product of two
vectors), other algorithms depend on the precise properties of floating point multiplication and addition and do not
work when a fused mac is substituted [56].  However, in many cases, algorithms do continue to work, and execute
faster, when a fused mac is used.  Other algorithms, such as many DoubledDouble  arithmetic implementations,
require a fused mac.  To fully support fused mac, the programmer needs to be able to specify three cases:  fused mac
must be used, fused mac must not be used, and it is irrelevant whether or not fused mac is used.  Borneo supports
two of the three options; fused mac must be used and fused mac must not be used.

Fused mac must not be used is specified by writing programs with the traditional floating point operators;
fused mac must be used is specified by explicitly using a fused mac method.  To portably support a fused mac on
machines that do and do not have fused mac hardware, Borneo provides explicit fused mac methods for all primitive
floating point types.  On platforms where fp.fmac  (section 6.5) is “true ”, the fmac  methods should use
appropriate native instructions.  Otherwise, integer calculations can be used to implement fused mac.  Supporting
fused mac through a library call is suggested by Gosling in [37].

For compatibility with Java, Borneo requires that all uses of fused mac be explicitly indicated; the compiler
or interpreter is not free to combine consecutive multiplication and addition operators into a single fused mac.

Borneo does not support the third option of using fused mac if convenient because doing so would require
extensive changes to the language.  The semantics of  “a * b ” would be changed to depend on the surrounding
expression.  For predictable behavior, the precise conditions under which a multiply followed by an add in the source
language can be collapsed into a fused mac need to be given.  For increased speed, using fused mac if possible could
be made the default; a declaration could be used to inhibit fused mac where inappropriate.  Explicit storing to
temporaries would also disable fused mac but possibly slow down the code.  Alternatively, Borneo’s anonymous
declarations (section 6.10) could be overloaded to indicate using fused mac was permitted.

At the JVM level, support fused mac if convenient would also require changes.  For example, two new sets
of instructions, one for explicit fused mac and another for possibly fused mac could be added.  Both options are
necessary for portable code to be compiled on one machine and run on another while preserving source program
semantics.  For better compatibility with existing JVMs, the multiply and add operations allowed to be fused could
be indicated in a separate table stored as an extra attribute in the class  file ([66] §4.7.1).  Using consecutive
multiply and add instructions is invariably slower than a single fused mac instruction on hardware supporting fused
mac.  Therefore Borneo’s current semantics can cause some degradation of performance on fused mac capable
machines since fused mac cannot be used by default.  However, making all uses of fused mac explicit limits semantic
differences when compiling existing Java source with a Borneo compiler.

6.7. Rounding Modes
Round round get around

I get around
—Brian Wilson, “I Get Around”

Calculating with floating point numbers almost invariably requires approximation.  Multiplying two floating point
numbers can generate an infinitely precise result with twice as many significand bits.  To exactly represent the result
of floating point addition, hundreds and hundreds of bits might be necessary if the two summands are very different
in magnitude.  Therefore, a large loss of information can occur when a floating point operation on two numbers
delivers a result in the same format.  However, arbitrarily precise arithmetic is impractical (and unnecessary) in many
circumstances, so the roundoff properties of a floating point standard are very important.

The IEEE 754 default rounding mode, round to nearest even, is appropriate for most calculations.  The
other rounding modes are useful for various sorts of error analysis and for interval arithmetic.  Dynamically changing
rounding modes can also be used to find numerically unstable calculations.  The next section discusses more detailed
requirements for using different rounding modes.
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6.7.1. Requirements of algorithms using rounding modes
Algorithms that exploit rounding modes have four requirements reflecting different usages.
1. dynamic rounding modes:  Some codes have the property that they can be run meaningfully under different

rounding modes.  For example, as listed in section 6.7.5.1, a method that calculates a tight upper bound of a
polynomial at a given argument when run under round toward positive infinity finds a tight lower bound of the
polynomial when run under round toward negative infinity.  For such programs, the rounding mode should be an
implicit or explicit parameter that can be given at runtime.

2. static rounding modes:  On the other hand, interval arithmetic should not take a rounding mode from the
environment.  Instead, the rounding modes for interval arithmetic should be statically specified at compile time.

3. scoping:  A common idiom when using rounding modes is to implement scoping as shown in below; modifying
the rounding mode of a method’s caller is rarely desired.

savedRM = getRound();
setRound(newRM);
Calculation
setRound(savedRM);

4. numerical sensitivity detection:  Rounding modes can also provide a powerful testing mechanism for
determining if an algorithm is poorly behaved on certain inputs.  An input that causes an otherwise working code
to generate nonsense answers can be run under different rounding modes with the same troublesome input.  If
the answer varies greatly, sensitivity to rounding is the likely culprit.

The two formulas in Table 6 calculate the area of a triangle given the lengths of its sides.  However, the
classical Heron’s formula in the second column is quite sensitive to rounding differences for needle-like triangles
[57].  For the data in Table 6, when (a+b) + c is calculated, c gets rounded away.  The more sophisticated formula in
the third column is much more stable.  Of the two equations, Heron’s formula is commonly given in textbooks.  All
calculations in Table 6 are done to float  precision.  The same effect occurs with reduced frequency under wider
precisions.  As shown by the data, the answers given by Heron’s formula when run under different rounding modes
vary greatly while the more sophisticated formula is nearly unaffected (while also being correct).  Instead of
changing the rounding mode to find such sensitivities, changing that data slightly can also be attempted.  However,
as shown by the second set of input values, even a correct formula can be very sensitive to changes in the input data.
Also, knowing how to perturb the data without violating a program constraint is not always obvious:  if c were
perturbed too much, the three lengths would no longer form a triangle.  To find sensitivities, no one rounding mode
is superior; each one should be tried in turn.

Table 6 — Sensitivity to rounding of two different formulas to calculate the area of a triangle from the
lengths of its sides (calculations done in single precision).

Rounding mode Heron’s Formula
s a b c

s s a s b s c

 � �

¹ � ¹ � ¹ �

(( ) ) /

( ) ( ) ( )

2

(unstable)

( ( )) ( ( )) ( ( )) ( ( ))a b c c a b c a b a b c� � ¹ � � ¹ � � ¹ � �

4
(stable)

a=12345679, b=12345678, c=1.01233995 > a – b
to nearest 0.00 972730.06

to +∞ 17459428.00 972730.25
to -∞ 0.00 972729.88
to 0 -0.00 972729.88

a=12345679, b=12345679, c=1.01233995 > a – b
to nearest 12345680.00 6249012.00

to +∞ 12345680.00 6249013.00
to -∞ 0.00 6249011.00
to 0 0.00 6249011.00

To support finding such sensitivities, the standard mandates that rounding modes can be dynamically
changed at runtime to any of the four possibilities.  Microprocessors conforming to the standard provide FPU control
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bits to represent and change the rounding mode.16  Some Unix systems provide library routines to sense and change
the rounding mode dynamically.  Unfortunately, the library interface is not uniform across operating systems.  Even
if the interface were standardized, library calls alone are inadequate to properly support rounding mode control.

Original Code
{

int r;
float f;

f = 1.0f + Float.ROUNDING_THRESHOLD;

if(f  == 1.0f) // rounding mode is to zero or to –infinity
{

f = –1.0f – Float.ROUNDING_THRESHOLD;
if(f == –1.0f)

r = Math.TO_ZERO;
else

r = Math.TO_NEGATIVE_INFINITY;
}
else // rounding mode is to nearest or to +infinity
{

f = –1.0f – Float.ROUNDING_THRESHOLD;
if(f  == –1.0f)

r = Math.TO_POSITIVE_INFINITY;
else

r = Math.TO_NEAREST;
}

}

After constant folding under round to nearest
{

int r;
float f;

f = 1.0000001f;

if(f  == 1.0f)
{

f = –1.0000001f;
if(f == –1.0f)

r = Math.TO_ZERO;
else

r = Math.TO_NEGATIVE_INFINITY;
}
else
{

f = –1.0000001f;
if(f  == –1.0f)

r = Math.TO_POSITIVE_INFINITY;
else

r = Math.TO_NEAREST;
}

}

After constant propagation,
dead code elimination, etc.
{

int r;
r =

Math.TO_NEAREST;
}

Figure 6 — Code fragment which determines the rounding mode using the results of arithmetic operations
and ruinous optimization sequence.

The code in the first column of Figure 6 yields different results under different rounding modes; in
particular, it uses the results of well-chosen arithmetic operations to determine the current rounding mode setting.
This small segment of code has several tempting opportunities for optimization.  If rounding modes can be ignored,
the expression 1.0f + Float.ROUNDING_THRESHOLD  has constant operands and can therefore be constant
folded at compile time.  Once that is done, the value of f  is a constant which can be propagated to the first
comparison operation.  The comparison also involves constant operands and can also be evaluated at compile time,
allowing the true branch to be recognized as unreachable code and not even compiled.  A compiler at even modest
levels of optimization may perform such an optimization sequence.  Current Java semantics do not preclude such
efforts.  Thus, if code similar to the code in Figure 6 were used to try to determine the current rounding mode at
runtime, the optimizer may defeat the purpose of the code.  If the rounding mode is known to be constant at compile
time, the compiler could perform the optimization sequence while preserving the desired semantics.17  Therefore, to
generate correct optimized code, the compiler must know when the rounding mode may be varied at runtime and
what values the rounding mode can assume.  The presence of library calls sensing or changing the rounding mode is
not necessary for rounding modes to influence a computation.

6.7.2. rounding  Declarations
In Borneo a new language declaration, rounding Expression , informs the compiler when rounding modes
other than round to nearest might be used.  As shown in Figure 8, the integers from 0 to 3 are used to denote
rounding modes; mnemonic constants for the rounding modes are defined in the Math  class (Java does not have
enumerated types).  A rounding  declaration is effective from the declaration point in a block to the close of that
block or to the next rounding  declaration.  If the expression given to a rounding  declaration evaluates to an

                                                          
16 The Alpha [83] can statically encode three of the four rounding modes into two bits of arithmetic opcodes; the
fourth bit pattern is used to take the rounding mode from the FPCR (Floating point Control Register).
17 Borneo semantics preserve the flag effects of expression evaluation.  If evaluating an expression causes no flags to
be raised, the expression can be evaluated at compile time regardless of rounding mode (with one exception).  When
an expression is exact (the inexact flag is not raised) the same answer is delivered under all rounding modes, except
in the case of x – x = ±0.0 where the sign of zero depends on the dynamic rounding mode.
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integer outside of [0, 3] an unchecked UnknownRoundingModeException  is thrown.  It is not a compile time
error to give a rounding  declaration a constant integer expression (JLS §15.27) outside of [0, 3].  The compiler
treats such a declaration as equivalent to

throw new UnknownRoundingModeException()

which can affect the reachability (JLS §14.19) of other statements.

Augmented Java syntax
LocalVariableDeclarationStatement:

FloatingPointRoundingDeclaration ;

New Borneo Productions
FloatingPointRoundingDeclaration:

rounding  Expression

Figure 7 — Changes and additions to the Java grammar to support rounding mode declarations.

// enumerated rounding modes
public static final int TO_NEAREST = 0;
public static final int TO_ZERO = 1;
public static final int TO_POSITIVE_INFINITY = 2;
public static final int TO_NEGATIVE_INFINITY = 3;

// getRound returns the current rounding mode using the above encoding
public static int getRound();

// setRound sets the current rounding mode to the rounding mode represented by its argument
public static void setRound(int rm) throws UnknownRoundingModeException;

// New exception class
public class UnknownRoundingModeException extends RuntimeException {}

Figure 8 —Changes to the Math  class and a new exception class to support IEEE 754 rounding modes.

Rounding modes are lexically scoped; a method does not inherit the rounding mode of its caller, although
blocks do inherit the rounding mode of the textually enclosing block.  A rounding  declaration can appear in the
optional initialization code of a for  loop.  Such a rounding  declaration affects the remainder of the loop
initialization, the loop test, and the loop update portions of the for  loop as well as the loop body.  The default
rounding mode is round to nearest.  Since uses of non-default rounding modes in Borneo must be explicit, existing
Java programs cannot break by being run under an unintended rounding mode.18  The code regions influenced by
rounding  declarations are lexically scoped to facilitate optimizations such as constant folding, constant
propagation, and common subexpression elimination.  Constant folding can be performed under any rounding mode
as long as the rounding mode does not vary at runtime.  A Java compiler’s existing machinery to find and evaluate
constant integer expressions can be used to determine when the expression given to a rounding  declaration is a
compile-time constant.  The rounding  declarations give the compiler enough information to determine when such
transformations are valid, otherwise, erroneous programs can result [35].

While rounding  declarations aid compiler optimizations, more importantly, explicit declarations make
clear to a reader of the program what portions of the code can be run under different rounding modes.  Long lasting
code is often read more often than modified, making easy understanding important.

The initialization of static  class variables by constant expressions is not influenced by different rounding
modes; such expressions on float  and double  values can be evaluated at compile time.  To use rounding modes
other than round to nearest to initialize fields, a method call can be used or a rounding  declaration can be placed
inside a static  initializer block (JLS §8.5).

                                                          
18 As discussed in section 6.7.3, Borneo actually does allow existing code to be run under a different rounding mode.
However, this feature is not strictly part of the language; the same effect could be achieved by using a native
assembly language program to alter the rounding mode.
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Borneo Code
{

Calculation1

rounding Expression1;
Calculation2

rounding Expression2;
Calculation3

}

Equivalent Java code with native  methods
{

int savedRM = getRound();
try

{
Calculation1

//rounding Expression1;
setRound(Expression1);
Calculation2

//rounding Expression2;
setRound(Expression2);
Calculation3

}
finally

{
setRound(savedRM);

}

}

Figure 9 — Desugaring Borneo rounding  declarations into Java with native  methods.

No matter how a method or block affected by a rounding  declaration is exited, the previous rounding
mode must be restored.  Restoring the rounding mode can be realized with the same code generation techniques as
used for try-finally .  Assuming optimizations are inhibited, rounding  declarations can be desugared into
Java using native  methods to manipulate the rounding mode, as shown in Figure 9.19  When generating native
code, the setRound  and getRound  calls can be implemented with a few assembly language instructions.  The
desugaring introduces a new scope, via a set of braces, for the variable holding the previous rounding mode.
Assuming there are no method calls in the original block, in the desugared code getRound  only has to be called
once per original source block with a rounding  declaration.  The desugared code has one call to setRound  for
each rounding  declaration in a block (plus an addition call to setRound  after exiting the block to restore the
original rounding mode).

As discussed further in the next section, a block with a rounding  declaration must set the rounding mode
to round to nearest before any method call and restore the rounding mode after the call returns; a valid desugaring is
given in Figure 10.  This requirement prevents explicit calls to setRound , including calls to setRound  from a
called method, from circumventing the rounding mode set by a rounding  declaration.  Taking asynchronous
exceptions into consideration imposes constraints on the saving and restoring of rounding modes around a method
call.  Asynchronous exceptions can occur at any point during a thread’s execution.  Java only has two asynchronous
exceptions, ThreadDeath  caused by calling the stop  family of methods for Thread  or ThreadGroup  and
InternalError  in the JVM.  When asynchronous exceptions are generated, finally  clauses still get executed.
Even though a thread handling an asynchronous exception may soon terminate, the dynamic rounding mode should
be properly set so that floating point code in pending finally  clauses executes properly.  To ensure this, calls to
setRound  generated from rounding  declarations or from restoring the rounding mode for method calls should
be in try-finally  blocks that restore the previous rounding mode in the finally  clause.  To properly restore
the rounding mode, the previous rounding mode must be available in the finally  clause.  If asynchronous
exceptions could be ignored, the desugaring in Figure 10 could avoid introducing a new variable by using the
existing savedRM variable to hold two rounding modes, the rounding mode before the scope was entered and the
rounding mode before the method call.  However, if that were done, at least one of the calls to setRound  in the
compiler generated finally  clauses could incorrectly set the rounding mode if an asynchronous exception
occurred.

                                                          
19 These desugarings assume arithmetic operations can be influenced by setting the dynamic rounding mode.  This is
not the default code generation technique used on Alpha platforms (where some rounding modes can be statically
indicated in an instruction field).
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Borneo Code
{

// Calculation1 and Calculation2 do not have
// any method calls
rounding Expression;
Calculation1

// a method call
foo(ParamExpr1, ParamExpr2);.

Calculation2

}

Equivalent Java code with native  methods
{

// Calculation1 and Calculation2 do not have
// any method calls
int savedRM = getRound();

try
{

// rounding Expression;
setRound(Expression);
Calculation1

// evaluate arguments to the method under the current rounding mode
ParamExprType1 t1 = ParamExpr1;
ParamExprType2 t2 = ParamExpr2;

// record current rounding mode
int currentRM = getRound();

try
{

setRound(Math.TO_NEAREST);
// a method call
foo(t1, t2);

}
finally

{
// restore rounding mode to value before method call
setRound(currentRM);

}
Calculation2

}
finally

{
setRound(savedRM);

}

}

Figure 10 — Desugaring of a method call in a block with a rounding  declaration.

As shown in Figure 11, the desugaring for a rounding  declaration inside a loop is the same as a
rounding  declaration outside a loop.  When a rounding  declaration appears at the start of a loop body, if the
compiler can prove the loop tests (and loop updates in the case of a for  loop) are not affected by the rounding
mode, the more efficient translation in Figure 12 is also valid.

Borneo Code
int i=0;
while( i < MAX)
{

Calculation1

rounding i % 4;
Calculation2

}

Equivalent Java code with native  methods
int i = 0;
while( i < MAX)
{

{
int savedRM = getRound();
try

{
Calculation1

//rounding i % 4;
setRound(i %4);
Calculation2

}
finally

{
setRound(savedRM);

}
}

}

Figure 11 — Translating a Borneo loop with a rounding  declaration into Java with native  methods.
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Borneo Code
int i =0;
while(int i < MAX)
{

rounding i % 4;
Calculation

}

Equivalent Java code with native  methods
int i = 0;
while(i < MAX)
{

{
int savedRM = getRound();
try

{
// rounding i % 4;
setRound(i %4);
Calculation

}
finally

{
setRound(savedRM);

}
}

}

More efficient translation
{

int i = 0;
// rounding mode is not restored on each loop
// iteration
int savedRM = getRound();
try

{
while(i < MAX)

{
// rounding i % 4;
setRound(i %4);
Calculation

}
}

finally
{

setRound(savedRM);
}

}

Figure 12 — Different translations of loops with rounding  declarations.

To achieve true dynamic behavior, a parameter or other variable can be used as the Expression  for a
rounding  declaration.  A class variable could also be used to determine the rounding mode for operations on
objects of that class.

6.7.3. Finding Sensitivities and Code Generation Requirements
The rounding  declarations directly meet three of the four requirements discussed earlier.  To achieve dynamic
behavior, a rounding  declaration can be given a non-constant expression as an argument.   A fixed rounding mode
can be set by giving rounding  a constant integer expression, such as one of the static final  fields
representing rounding modes in the Math  class.  The semantics of rounding  implement scoped rounding modes
without cluttering the code with numerous explicit getRound  and setRound  calls.  However, rounding
declarations prevent code not designed for use under non-standard rounding modes to be run under different
rounding modes to test for sensitivities.  Since finding sensitivities by changing rounding modes is useful, Borneo
mandates certain code generation requirements to allow the benefits of structured rounding mode control while still
permitting dynamic rounding mode control over existing code.

In the absence of rounding  declarations, a method should be run under round to nearest, the Java and
IEEE 754 default.  Semantically, the compiled version of a method lacking rounding  declarations could set the
rounding mode to round toward nearest at the start of the method to ensure round to nearest was in effect.  However,
such setting of the rounding mode would be unnecessary since the default rounding mode is already round to nearest.
A Borneo program that does not explicitly use a rounding  declaration cannot defensively set the rounding mode
to round to nearest.20  Instead, blocks with rounding  declarations are responsible for saving the rounding mode of
the calling method and setting the rounding mode to round to nearest for the callee.   Methods that alter the rounding
mode should be in the small minority so some extra overhead in their usage is preferable to slowing down all
methods that do not alter the rounding mode.

Since Borneo methods that do not set the rounding mode cannot take defensive action, if an explicit call to
setRound  were made in such a method, all subsequent floating point operations would be run under the new
rounding mode.  For example, the method rounder  in Figure 13 sets the rounding mode and then calls
tolerant , a method without a rounding  declaration (see Figure 14 for an activation tree of this example).  In
the first call to tolerant  and the subsequent call to adder , the rounding mode set in rounder  is in effect.
However, when adder  is called from defensive , adder  always runs under round to nearest.  The rounding
mode set in defensive  is irrelevant; a block with a rounding  declaration must set the rounding mode to round
to nearest for its callees.  This example also demonstrates a possible hazard to using explicit setRound  calls; the

                                                          
20 This requirement implies Borneo code compiled on the Alpha will by default have to take the rounding mode from
the status register.
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rounding mode of rounder ’s caller is changed to round to zero, possibly causing unintentional repercussions such
as invalidating optimizations leading to incorrect code being executed.

static void rounder(void)
{

Math.setRound(TO_ZERO); // explicitly set rounding mode
tolerant(1.0, ROUNDING_THRESHOLD); // the sum of the two arguments rounded to zero due to call to setRound
defensive(1.0, ROUNDING_THRESHOLD); // the sum of the two arguments unaffected by the call to setRound
// original rounding mode not restored!  Almost certainly an error!

}

static double tolerant(double a, double b)
{

return adder(a,b);  // sum not protected against explicit rounding mode changes made in caller
}

static double defensive(a, b)
{

rounding Random.nextInt() % 4;
return adder(a, b);// before calling adder , the rounding mode is restored to round to nearest,

// the rounding mode in affect in defensive  is irrelevant
}

static double adder(a, b)
{

return a + b;
}

Figure 13 — Code demonstrating interplay between explicit setRound  calls and rounding  declarations.

no rounding
declaration

rounder

tolerant defensive

adder

rounding mode set to
round to zero

runs under
round to zero

adder

includes rounding
declaration

runs under
round to nearest

Figure 14 — Activation tree for the code in Figure 13.

Following these guidelines, even previously compiled code can be tested for roundoff sensitivity without
ruining explicit rounding mode settings.  Borneo’s rounding mode related code generation requirements allow
previously compiled programs to be called under different rounding modes.  Currently, not all JVM class  files are
generated from Java programs; other languages can be supported as well.21  Borneo maintains Java’s ability to
interoperate with code from other languages.

This technique for supporting dynamic rounding modes on arbitrary code is extra-lingual.  The structured
rounding  declarations should be used for normal programming purposes.  The compiler is not obligated to defend
against rounding mode changes outside of rounding  declarations.  For example, a Borneo compiler can perform
common subexpression elimination of b + c  on the code in Figure 15 even though the call to foo  can potentially
change the rounding mode and thus alter the evaluation of b + c .

                                                          
21 For example, the Ada 95 compilers AppletMagic by Intermetrics and ObjectAda by Aonix can produce class
files.
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Borneo Code
static final double b = 1.0;
static final double c = Double.ROUNDING_THRESHOLD;
{

double a, d;
a = b + c;
foo();
d = b + c;

}

Borneo Code after legal common subexpression elimination
static final double b = 1.0;
static final double c = Double.ROUNDING_THRESHOLD;
{

double a, d;
a = b + c;
foo();
d = a;

}

 Figure 15 — Rounding modes and common subexpression elimination.

6.7.4. Rationale and Alternatives
To ease running identical code under different rounding modes and testing for sensitivities, an alternative proposal is
to treat the rounding mode as an implicit parameter to all methods and to have all rounding mode changes be made
by calls to setRound .  This approach is taken by RealJava [23] and C9X [94].  In that case, the rounding mode of a
method is inherited from the caller and dynamic rounding modes are always supported.  However, explicit calls to
setRound  are unstructured and there is no guarantee that scoping is enforced, even though that is usually the
desired behavior.  The rounding  declarations allow the compiler and the programmer to reason about and identify
the portions of the code that could be run under non-default rounding modes.  Therefore, Borneo chooses
rounding  declarations to control the common uses of rounding modes while still permitting more dynamic control
when necessary.

The getRound  method is included for completeness and convenience.  No getRound  method is strictly
necessary since a method does not inherit the rounding mode of its caller under normal circumstances.  Since the
rounding mode is only changed under programmer direction, the programmer can keep the current rounding mode in
a variable.  The rounding mode can also be determined by performing a known series of simple computations, such
those in Figure 6.

Initially a more object-oriented language representation of rounding modes was considered.  Instead of
integers, a RoundingMode  class with subclasses for each rounding mode was proposed.  The type of such an
object would encode the rounding mode.  However, since RoundingMode  would be a reference type, it would be
possible for a RoundingMode  variable to be null .  Therefore, a rounding  declaration would throw two kinds
of exceptions instead of one; an UnknownRoundingMode  exception (due to a user-defined subclass of
RoundingMode ) and a NullPointerException .  Using an integer representation for rounding modes
eliminates the NullPointerException , more closely matches the hardware representation, and allows for more
natural iteration over rounding modes.  With the integer representation, if the Expression  given to rounding  is
a constant, using existing integer constant folding machinery the compiler may be able to infer whether a particular
rounding  declaration cannot throw (or always throws) an exception.

6.7.5. Rounding Mode Examples
The following examples show how rounding modes can be used dynamically in polynomial evaluation and statically
in interval arithmetic.

6.7.5.1. Polynomial evaluation

The evaluation of a polynomial with floating point coefficients usually involves some roundoff errors.  Sometimes it
is useful to obtain upper and lower bounds of a polynomial and its derivative at a given value.  Directed rounding
modes can be used to accomplish this task, as shown in Figure 16.
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double[] extrema( double a[], // array of coefficients a0x
n+ a1x

n-1 + a2 xn-2… where n is the degree of the polynomial
double x, // where to evaluate the polynomial
boolean upper)// whether to calculate an upper or lower bound

{
double q, // value of the derivative of the polynomial

p, // value of the polynomial
answer[] = new double[2];// returned pair

boolean negated = false; // whether or not coefficients have been negated to evaluate at x < 0
int i;

if(x < 0.0) //adjust coefficients so correct extrema  is calculated
{

// to correctly find the extrema of a polynomial evaluated at a negative value, the coefficients of the

// odd powers must be negated, instead of evaluating f x a xi
n i

i

n

( )  �

 

Ç
0

, when x < 0, we evaluate

//g x b xi
n i
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 where b ai
n i

i � ¹
�( )( )mod1 2

negated = true;
x = –x;

for(i = (a.length %2?1:0); i <= a.length; i += 2)
a[i] = –a[i];

}

// set rounding mode to ±∞
rounding (upper? Math.TO_POSITIVE_INFINITY:

Math.TO_NEGATIVE_INFINITY);

// Use Horner’s method to evaluate the polynomial and its derivative
q  = 0.0;
p = a[0];

for(i=1; i <= a.length; i++)
{

q = x * q + p;
p = p * x + a[i];

}

//adjust array coefficients back to original values
if(negated)

{
for(i =(a.length %2?1:0); i <= a.length; i += 2)

a[i] = –a[i];
}

answer[0] = p;
answer[1] = q;
return answer;

}

Figure 16 — Dynamic rounding modes used to find the extreme value of a polynomial at a given input.

6.7.5.2. Interval arithmetic

Interval arithmetic at a reasonable cost was the main impetus for including directed rounding in the IEEE 754
standard.  Figure 17 and Figure 18 show the core computation for interval addition and multiplication.  For interval
addition, the new lower bound is calculated by adding the lower bounds of the argument intervals rounding toward
negative infinity while the new upper bound is gotten by adding the input upper bounds rounding toward positive
infinity.  Due to the possibility of intervals whose endpoints have different signs, interval multiplication must
examine all four pair-wise products of the input upper and lower bounds.  These two small pieces of code are only
the skeletons needed in an actual interval package; a usable interval package must be concerned with representing
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various types of degenerate intervals [58] as well as limiting spurious floating point exceptions [80].  Interval
division with a divisor interval containing zero also causes complications [81].

Interval add(Interval a, Interval b)
{

double lower_bound, upper bound;

rounding Math.TO_NEGATIVE_INFINITY;
lower_bound = a.lower_bound + b.lower_bound;

rounding Math.TO_POSITIVE_INFINITY;
upper_bound = a.upper_bound + b.upper _bound;

return new Interval(lower_bound, upper_bound);
}

Figure 17 — Core computation for interval addition.

Interval multiply(Interval a, Interval b)
{

double lower_bound, upper bound;

rounding Math.TO_NEGATIVE_INFINITY;
lower_bound = min( a.lower_bound * b.lower_bound, a.lower_bound * b.upper_bound,

a.upper_bound * b.lower_bound, a.upper_bound * b.upper_bound);

rounding Math.TO_POSITIVE_INFINITY;
upper_bound = max( a.lower_bound * b.lower_bound, a.lower_bound * b.upper_bound,

a.upper_bound * b.lower_bound, a.upper_bound * b.upper_bound);

return new Interval(lower_bound, upper_bound);
}

Figure 18 — Core computation for interval multiplication.

6.8. Floating Point Exception Handling
The IEEE 754 standard provides two techniques for dealing with “exceptional” floating point conditions, setting
sticky flags and calling a trap handler.  However, no existing modern high-level language provides a structured
mechanism for using these features.  Borneo has support for both exception handling policies.  A Java method’s
declaration includes information on the return type, the number and type of parameters, and on what checked
exceptions can be thrown.  Borneo method declarations also include a “flag signature,” the sticky flags a method
accepts from its caller and the flags a method returns to its caller.  A new control structure and library methods are
provided to access the flags.  For floating point exceptions, instead of allowing users to provide their own trap
handlers, Borneo integrates floating point traps into the existing Java exception mechanism

By using the traps and sticky flags robust algorithms can be made to run much faster.  Full language support
enables better optimization.  Simple algorithms tend to be acceptable for typical data, but other valid inputs can
cause such algorithms to fail.  While a given algorithm that uses exception handling, either flags or some form of
trapping, can be replaced by an analogous algorithm without exception handling, removing the exception handling
capability often exacts a considerable penalty in decreased performance and increased complexity.  Using floating
point exception handling allows simple algorithms to run quickly in the common case; exceptional cases tend to be
rare and can be dealt with using slower, more cautious algorithms.  This approach to making fast, robust numerical
algorithms was applied in [25] to several LAPACK [13] routines.  By using flags to record exceptional conditions,
significant speed improvements were made to a number of linear algebra algorithms.

6.8.1. Exceptions and Trapping Floating Point Operations
As discussed in [56], existing numerical programs use floating point exception handling capabilities to perform a
limited number of tasks.
1. IEEE 754 non-trapping mode:  Knowledge of how NaNs and infinities arise and propagate can lead to shorter

code with fewer branches.
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2. stopping the computation:  Stopping the computation can be used when a simple algorithm’s limits have been
exceeded and a more robust algorithm is needed.  Alternatively, the entire calculation can be aborted if a
semantic constraint, such as no NaNs, has been violated.

3. presubstitution:  Presubstitution is a generalization of returning IEEE special values as the result of an
exceptional operation.  Instead of a returning a fixed value, such as infinity on divide by zero, presubstitution
computes a value to be returned when an exceptional condition arises.  This technique can make some
computations, such as computing a continued fraction and its derivative, run with fewer defensive tests and
branches in the inner loop [60].

4. extended exponents:  Exponent extension augments the existing exponent field of a floating point number with a
32 bit integer.  This yields an enormous range, but does not increase the precision of the number.  However,
some computations, such as computing the determinant of a high-dimensionality matrix benefit from extended
range without extended precision.

6.8.1.1. Changing Trapping Status

Borneo uses lexically scoped enable  and disable  declarations to control the trapping status of a section of code.
Enabled conditions (any combination of invalid, overflow, divide by zero, underflow, and inexact) allow the
corresponding floating point exception to be thrown as a side effect of an arithmetic operation.  The Borneo trap
handler handles a hardware floating point trap and throws the corresponding Borneo exception (Figure 19). 22  The
default trapping status is disable all  (non-trapping mode).  If a non-default trapping status is being used, the
default trapping status must be restored before a method call and the non-default status restored afterwards.

In general, a single kind of floating point operation (addition, division, etc.) is not capable of generating all
five exceptional conditions, regardless of input.  Table 7 lists what conditions different operations can generate.
Enabling divide by zero in a section of code having only multiplies and adds would have no affect since multiplies
and adds cannot generate the divide by zero signal.  While addition and multiplication can generate four of the five
exceptional conditions and division can generate all five, at most two of the conditions can be generated
simultaneously by executing a single instruction (overflow and inexact, underflow and inexact).  If both
overflow/inexact or underflow/inexact are being trapped on, the overflow/underflow exception is thrown instead of
inexact.

Like most Java exceptions, Borneo floating point exceptions are synchronous.  Floating point exceptions
are also source-code precise.  Since Borneo’s floating point exceptions are checked exceptions, they must be
explicitly caught by a catch  block or declared in the method’s throws  clause.  When a condition is enabled ,
the corresponding sticky flag is not set.  Figure 22 details the syntax changes to support floating point exceptions and
sticky flags.  Each condition can appear at most once in a TrappingConditions list, and all  and none  must only
appear by themselves.

Exceptions of type FloatingPointException  and its subclasses can also be created and thrown
explicitly by the programmer.  Besides the usual exception constructors and methods, OverflowException  and
UnderflowException  include additional constructors and methods to initialize and convey floating point
                                                          
22 The IEEE 754 standard has different rules for generating the underflow condition based on the trapping status.  If
trapping on underflow is off, loss of precision and tininess are required for the underflow flag to be set.  If trapping
on underflow is on, any non-zero result smaller in magnitude than the minimum normal value will generate an
underflow trap; no loss of precision needs to occur.  The enable  blocks throw exceptions according to these
trapping enabled semantics.

The standard allows two options for detecting tininess:  either before or after rounding.  Therefore, different
IEEE implementations can yield different signals (but the same value) for some combinations of operations and
arguments.  The differences are only visible if the answer is equal to ±MIN_NORMAL.
One computation that can be used to determine what policy a processor uses is

// clear flags
float f = 2.3509886e-38f * 0.5f;
// if underflow is set, tininess is detected before rounding, otherwise tininess is detected after rounding

The left hand operand is equal to scalb(Float.MAX_VALUE, -253) , a significand of all ones with the
minimum normal exponent.  Multiplying this value by 0.5  rounds up to Float.MIN_NORMAL .

A program designed to handle underflow should work properly if tininess is detected before or after
rounding.
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values.  For the format causing the overflow or underflow exception, the corresponding type Value  method of the
exception returns the wrapped exponent result as required by the standard.  For example, in the following small
method, if the multiplication of a and b overflows, a result with the same significand bits as a * b  but with an
exponent 192 less than the true result is returned.

public static float wrapped_multiply(float a, float b)
{

try
{

enable overflow
return a * b;

}
catch (OverflowException e)

{
return e.floatValue(); // same as value as (float)scalb( (double)a * (double b), –192)

}
}

6.8.1.2. Inferring Floating point Exceptions

Table 7 — Floating point operations and the exceptional conditions they can generate; different causes of
invalid are distinguished.

Overflow Underflow Inexact Invalid Divide by
Zero

+, – X X X X,
∞ – ∞

* X X X X,
∞*0

/ X X X X,
∞/∞,
0/0

X

remainder23 X,
invalid

remainder from
x REM 0 or
 ∞ REM y

X X X,

x , x<0
comparison other than
==, !=

X,
compare with

NaN
conversion between
float and int types
(such as casts)24

X X,
bad format
conversion

conversion from a
float format to a
narrower float format

X X X

                                                          
23 Java’s remainder operation on floating point numbers is not the IEEE 754 remainder but Borneo will throw an
invalid remainder exception under the same conditions as the invalid remainder exception would be thrown for the
IEEE 754 remainder.
24 Unlike IEEE 754, the IEEE 854 standard clearly states that floating point to integer conversion can raise the
inexact flag.
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public class FloatingPointException extends Exception {} //checked exception
//IEEE 754 floating point exceptions
public class InvalidException extends FloatingPointException {}

public final class InfinityMinusInfinityException  extends InvalidException{}
public final class InfinityTimesZeroException  extends InvalidException{}
public final class ZeroOverZeroException extends InvalidException{}
public final class InfinityOverInfinityException  extends InvalidException{}
public final class InvalidRemainderException extends InvalidException{}
public final class SquareRootOfNegativeException extends InvalidException{}
public final class BadFormatConversionException extends InvalidException{}
public final class ComparisionOnNaNException extends InvalidException{}

public final class InexactException extends FloatingPointException {}

public class OverflowException extends FloatingPointException{/* see section 8.12 for a full definition */}

public class UnderflowException extends FloatingPointException{/* see section 8.12 for a full definition */}

public final class DivideByZeroException extends FloatingPointException {}

Figure 19 — IEEE floating point exception class hierarchy.

Since floating point exceptions are checked exceptions, the Borneo compiler must infer from enable
blocks, floating point operations, and method calls what floating point exceptions can be thrown by a block of code
and which (if any) floating point exceptions need to be included in a method’s throws  clause.  Borneo uses a
simple, conservative, flow-insensitive analysis to determine which exceptions may be thrown.  When a condition is
enabled, the exceptions a given operation can throw are determined by examining Table 7.  Different causes for
invalid are distinguished.  Borneo assumes non-literal arguments to a floating point operation can take on all possible
values, even when analysis of the code could determine otherwise.  Borneo only uses local information to infer
which exceptions can be thrown.  For example, in Figure 21 Borneo infers the expression in the first return
statement, 2.0 / x , can throw a divide by zero exception even though this expression is guarded by a test for
x != 0.0 .  Borneo does take into account the value of explicit literals; for example, x /2.0  is known not to
cause a divide by zero exception.  If two float  values are promoted to double  and operated on, the double
operation signals neither underflow, overflow, nor inexact, but Borneo does not attempt to use such relationships.

There are situations where a compiler could infer an exception is always thrown.  For example, in a region
where invalid is enabled, x >= NaN  always causes an exception to be thrown.  However, Borneo does not use such
analyses to determine the reachability of statements (JLS §14.19).  Borneo only determines which floating point
exceptions an expression may throw, not what exceptions must be thrown.  This is equivalent to modeling operators
on primitive floating point types as methods having throws  clauses listing the appropriate exceptions.

Borneo’s algorithm for inferring the floating point exceptions an expression may throw is given in Figure
20.  If neither operand to a binary operator is a literal, the full set of exceptions for that operator in Table 7 is
intersected with the enabled conditions (enabling invalid allows subclasses of InvalidException  to be thrown).
When a single operand is a literal, the algorithm checks for special floating point values and eliminates exceptions
that cannot be thrown.  For example, if the divisor is a non-zero literal, the divide by zero exception cannot be
thrown.  However, Borneo’s algorithm is not as precise as possible.  In particular, the value of a literal is not used to
determine if overflow or underflow is not possible.  For example, if one operand is between –1.0 and 1.0, a
multiplication cannot overflow since the magnitude of the result is less than or equal to the magnitude of the other
operand.  Similar properties hold for division, addition, and subtraction (see Table 8).  Borneo does not use the
values of literals in this manner for several reasons.  First, the exception limits for addition and subtraction are
dependent on the rounding mode.  For example, under round to nearest, there are non-zero values small enough such
that adding these values to another number cannot cause overflow.  Such numbers do not exist under round to ±∞.
Second, the various threshold values differ for each format.  Since indigenous  does not correspond to one
format, float  and double  expressions would have more precise exception information calculated.  Therefore,
double  and indigenous  expressions with literals of the same value would have different exceptions inferred
even when indigenous  was implemented as double .
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// determine what floating point exceptions an IEEE 754 floating point expression may throw given the trapping status and rounding mode
SetOfExceptions infer(Expression,// Expression to have exceptions inferred

 FPState) // Trapping status and rounding mode, rounding mode can be a particular value or indeterminate
{ if(isliteral(Expression) return {}; // the empty set
else if (the expression is a unary operation of the form op Expression1 where op is unary + or unary – or a widening cast),

return infer(Expression1, FPState)
else if (the expression is a narrowing cast) return ({Overflow, Underflow, Inexact} ∩ FPState.trapping) ∪ infer(Expression1, FPState);
else // Expression is of the form Expression1 op Expression2

if(isLiteral(Expression1) && isLiteral(Expression2) {
// perform operation under trapping status and rounding mode in FPState and see what exceptions are thrown.
/* if the rounding mode is indeterminate, take the union of exceptions thrown under all rounding modes */ }

else /* at least one operand is not a literal */ {
switch (op){

case “<”, “ >”, “ <=”, “ >=”:
if(!isLiteral(Expression1) && !isLiteral(Expression2)

return (infer(Expression1, FPState) ∪ infer(Expression2, FPState)) ∪ ({ComparisionOnNaNException } ∩ FPState.trapping);
else {

if (isLiteral(Expression1)) {LitExpr = Expression1; Expr=Expresion2} else {LitExpr = Expression2; Expr=Expression1}
if (isNaN(LitExpr.literal_value) ) {

return ({ComparisionOnNaNException} ∩ FPState.trapping) ∪ infer(Expr, FPState);}
else

return infer(Expr, FPState); }
case “/ ”:

if (!isLiteral(Expression1) && !isLiteral(Expression2)) {
return infer(Expression1, FPState) ∪ infer(Expression2, FPState) ∪ (FPState.trapping ∩

{Overflow, Underflow, Inexact, ZeroOverZeroException, InfinityOverInfinityException, DivideByZero})}
// different exceptions are thrown depending on if the divisor or dividend is a literal
else if (isLiteral(Expression1) && !isLiteral(Expression2)) { // literal dividend

switch (Expression1.literal_value) {
case ±∞: return ({InfinityOverInfinityException} ∩ FPState.trapping) ∪ infer(Expression2, FPState);
case ±0.0: return ({ZeroOverZeroException} ∩ FPState.trapping) ∪ infer(Expression2, FPState);
case NaN: return infer(Expression2, FPState);
default: return ({Overflow, Underflow, Inexact, DivideByZero} ∩ FPState.trapping) ∪ infer(Expression2, FPState);

}}
else if (!isLiteral(Expression1) && isLiteral(Expression2)) { // literal divisor

switch (Expression2.literal_value) {
case ±∞: return ({InfinityOverInfinityException} ∩ FPState.trapping) ∪ infer(Expression1, FPState;
case ±0.0: return ({ZeroOverZeroException, DivideByZero} ∩ FPState.trapping) ∪ infer(Expression1, FPState);
case ±1.0, NaN: return return infer(Expression1, FPState);
default: return ({Overflow, Underflow, Inexact} ∩ FPState.trapping) infer(Expression1, FPState); }}

case “+”, “ –”:
// + and – are commutative, same exceptions result if left or right operand is a literal
if(!isLiteral(Expression1) && !isLiteral(Expression2)) {

return infer(Expression1, FPState) ∪ infer(Expression2, FPState) ∪ (FPState.trapping  ∩
{Overflow, Underflow, Inexact, InfinityMinusInfinityException})}

else {
if(isLiteral(Expression1) {LitExpr = Expression1, Expr = Expression2} else {LitExpr = Expression2; Expr = Expression2;}
switch(Expr.literal_value) {

case ±∞: return infer(Expr, FPState) ∪ ({InfinityMinusInfinityException} ∩ FPState.trapping);
case NaN, ±0.0: return infer(Expr, FPState);
default: return infer(Expr, FPState) ∪ ({Overflow, Underflow, Inexact} ∩ FPState.trapping); }}

case “*”:
if(!isLiteral(Expression1) && !isLiteral(Expression2)) {

return infer(Expression1, FPState) ∪ infer(Expression2, FPState) ∪ (FPState.trapping  ∩
{Overflow, Underflow, Inexact, InfinityTimesZeroException}) }

else {
if(isLiteral(Expression1) {LitExpr = Expression1, Expr = Expression2}else {LitExpr = Expression2; Expr = Expression2};
switch(Expr.literal_value) {

case ±∞, ±0: return infer(Expr, FPState) ∪ ({InfinityTimesZeroException} ∩FPState.trapping);
case ±1.0, NaN: return infer(Expr, FPState);
default: return infer(Expr, FPState) ∪ ({Overflow, Underflow, Inexact} ∩FPState.trapping); }}

}}
}

Figure 20 — Pseudocode to determine what floating point exceptions an expression may throw.
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Table 8 — Conditions that could be used for more precise floating point exception inference.

Operation Exception Limitations if one operand is known25

(assume operands are of the same format)
multiplication • if the known operand has an absolute value ≤ 1.0, overflow cannot occur

division • if the divisor has an absolute value ≥ 1.0, overflow cannot occur
• if the divisor has an absolute value ≤ scalb(MIN_VALUE, MAX_EXPONENT – 2) ,

underflow cannot occur
• if the dividend has an absolute value ≤ scalb(MAX_VALUE, –(SIGNIFICAND_WIDTH

– 2 +MAX_EXPONENT)) , overflow cannot occur
• if the dividend has an absolute value ≥ nextAfter(4.0, 0.0) , underflow cannot occur

addition,
subtraction

• under round to nearest, if the known operand has an absolute value less than
scalb(MAX_VALUE, –(SIGNIFICAND_WIDTH+1)) , overflow cannot occur (no such
value exists under round to ±∞ and round to zero has a different threshold)

• if the known operand has an absolute value greater than
nextAfter (scalb(MIN_NORMAL, (SIGNIFICAND_WIDTH –1), ∞) , no
underflow can occur

Since the overflow and underflow behavior of an operation depends on the rounding mode, even if an
operation has two literal arguments, the runtime exceptional behavior may vary.  In the absence of rounding
declarations, Borneo assumes round to nearest is in effect.  Therefore, changes to the rounding mode other than
through rounding  declarations can cause unexpected exceptions to be thrown.  If an in-scope rounding
declaration has a constant valid argument, that rounding mode is used for exception inference.  Otherwise, the
compiler assumes any rounding mode can be in effect when an expression executes.  Therefore, in such cases, the
union of all possible exceptions is returned.

                                                          
25 This table only addresses literal values that imply overflow or underflow cannot occur; inexact is not discussed
since for a given operation and one particular regular floating point value (other than ±1.0 for multiplication/division
and ±0.0 for addition/subtraction), another floating point value can be constructed that signals inexact with the first
value.  In addition and subtraction, for any regular floating point literal, L, there exists another number, R, such that
R’s exponent is either p+1 greater or smaller than L’s exponent.  Therefore, when R and L are added (or subtracted)
one of the operands rounds away, an inexact operation.  For multiplication, multiplying MIN_VALUE by any
regular value with an absolute value ≤ ½ will cause an underflow and inexact.  Multiplying MAX_VALUE by a
number greater in magnitude than 1.0 will cause overflow and inexact.  The remaining floating point numbers
between ½ and 1.0 in magnitude have at least two 1’s in their significands.  Therefore, multiplying numbers between
½ and 1.0 by a number with all 1’s in its significand will signal inexact.  A similar construction exists for division.
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double calculate(double x) throws InvalidException, DivideByZeroException
{
double y;
enable divideByZero;
if(x != 0.0)

{
y = x / 2.0; // Borneo infers this statement cannot throw DivideByZeroException

return 2.0 / x; // Borneo infers this statement can throw DivideByZeroException
}

disable divideByZero;
enable invalid;
if (!Double.IsInfinite(x))

{
y = x – x; // Borneo infers this statement can throw InfinityMinusInfinityException

// even though the statement would not be reached if x were infinite

return y * x; // Borneo infers this statement can throw InfinityTimesZeroException
// even though this statement would not be reached if x were infintite

}
else

{
y  = x/x; // Borneo infers this can throw InfinityOverInfinityException  and

// ZeroOverZeroException
return y;

}
}

Figure 21 — Code to illustrate limits of Borneo floating point exception inference.

6.8.1.3. Specification

Augmented Java syntax
LocalVariableDeclarationStatement:

FloatingPointTrappingDeclaration ;

New Borneo Productions
FloatingPointTrappingDeclaration:

enable  TrappingConditions
disable  TrappingConditions

TrappingConditions:
TrappingCondition
TrappingConditions ,  TrappingCondition

TrappingCondition: one of
overflow underflow divideByZero invalid inexact all none

Figure 22 — Changes to Java grammar to support throwing floating point exceptions.

The enable /disable  declarations are lexically scoped; a condition is trapped on until the end of the enclosing
block or an overriding declaration is encountered.  An enable /disable  declaration in the optional initialization
code of a for  loop affects the remainder of the initialization, the loop test, loop update, and loop body.  Multiple
enable  declarations in the same block of code have a cumulative effect, as shown in Figure 23.  The extent of an
enable /disable  declaration is strictly textual; if an enable  declaration appears in the middle of a loop, the
trapping status of one iteration does not carry over to the next; see Figure 24 for an example.  If the inexact trap is
enabled, code may run very slowly due to pipelining effects on modern processors.
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trapper(float a, float b) throws OverflowException, UnderflowException;
{

float c;
enable overflow;
c = a + b; //Overflow Enabled

enable underflow;
c = a * b; //Overflow and underflow Enabled

disable overflow;
c = a /b; //Only underflow Enabled

}

Figure 23 — Borneo code to illustrate scoping of enable /disable  declarations.

float a, b, c, d;
for(i = 0; i < MAX; i++)
{

a = b + c; // this statement can never thrown an exception, a equals ∞ if b + c overflows
enable overflow;
d = b + c; // this statement throws an overflow exception if b + c would round to a value  larger than MAX_VALUE

}

Figure 24 — Scoping of an enable  declaration in a loop.

Floating point exceptions are treated much like ordinary Java exceptions.  Subclasses of
FloatingPointException  may be thrown and caught explicitly in addition to being generated by operations
on primitive floating point values.  For example, user-defined numeric classes may wish to throw IEEE 754 style
exceptions.  Since FloatingPointException  and its subclasses are checked exceptions, arithmetic exceptions
must be part of a method’s signature if not caught inside the method.  Floating point exceptions can escape enable
blocks if the appropriate catch  clause is not present.  Enabling exceptions and allowing exceptions to escape
methods can be used to halt the calculation once an infinity or NaN is generated.  The subclasses of
InvalidException  can be used by the programmer to help determine which operation caused an exception so
that the appropriate action can be taken.

The classes OverflowException  and UnderflowException  are used to return the
exponent-adjusted result to the user, as requested by the standard.  For example, if a computation on float  values
overflows and is caught with the following structure,

catch(OverflowException e){return e.floatValue()}

calling the floatValue  method returns the significand bits of the overflowed operation with an exponent adjusted
by -Float.BIAS_ADJUST .  Underflowed values have BIAS_ADJUST added to their exponent.

With Borneo’s floating point exception hierarchy, the programmer cannot immediately determine the type
of the operands in an overflowing or underflowing operation.  The type of the operands can be inferred from results
of calling floatValue , doubleValue , and indigenousValue  on the overflow or underflow exception.  On
overflow, if a platform has float , double , and indigenous  as distinct formats, the narrowest format returning
a finite value is the one which caused the exception.  Similarly, on underflow, the narrowest format with a non-zero
value caused the exception.  If indigenous  maps to the double  format, using only information available from
the exception it is not possible to distinguish an exception on double  operands from an exception on
indigenous  operands.  Table 11 gives additional information on the values held by overflow and underflow
exceptions under different exception generation conditions.
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Table 9 — Values returned by type Value  by arithmetic operations under different exceptional conditions.

Magnitude of result
floatValue() doubleValue() indigenousValue()

Overflow
float exponent adjusted value

≈2-65 to ≈262
full precision result
≈2127 to ≈2254

full precision result
≈2127 to ≈2254

double indigenous≡
double extended

infinity exponent adjusted value
≈2-513 to ≈2510

rounded result
≈21032 to ≈22046

indigenous≡double same as doubleValue
indigenous indigenous≡

double extended
infinity infinity exponent adjusted result

≈2-8292 to ≈27990

indigenous≡double same as
indigenousValue

exponent adjusted value
≈2-513 to ≈2510

Underflow
float exponent adjusted result

≈2-106 to ≈242
full precision result
≈2-298 to ≈2-150

full precision result
≈2-298 to ≈2-150

double indigenous≡
double extended

0.0 exponent adjusted result
≈2-614 to ≈2461

rounded result
≈2-2150 to ≈2-1076

indigenous≡double same as doubleValue
indigenous indigenous≡double

extended
0.0 0.0 exponent  adjusted result

≈2-8316 to ≈28130

indigenous≡
double

same as
indigenousValue

exponent adjusted result
≈2-614 to ≈2461

6.8.1.4. Alternatives and Rationale

The interface to floating point trap handlers varies greatly from system to system so supporting construction of
portable user-defined trap handlers would be difficult.  By incorporating floating point traps into the existing
exception mechanism, the implementation burden rests on the compiler/runtime writer instead of the compiler user.
Since floating point exceptions can only occur at well-defined points in the program (namely arithmetic operations),
floating point exceptions are synchronous, as opposed to asynchronous exceptions which can occur at any time.

An alternative design to the current exception hierarchy is to have overflow and underflow subclasses for
each primitive floating point type.  However, on machines where indigenous  and double  are implemented with
the same format, the hardware has no a priori way of discriminating between indigenous  and double  operations
to determine which exception to throw.  The trap handler would need additional information from the running
Borneo program; communicating such information to the trap handler would be troublesome.

The current proposal does require additional checking to distinguish between exceptions from different
formats in mixed-format code, but if a finer granularity is needed, homogenous-format regions can have their own
catch  blocks.  Having unified overflow and underflow exceptions also simplifies the compiler’s determination that
all floating point exceptions are either caught or declared in the throws  clause of a method.  New numeric types
can also more easily and uniformly extend a single UnderFlowException  or OverFlowException  class.

6.8.1.5. Floating Point Exception Examples

The following examples demonstrate different techniques of improving numerical algorithms by using floating point
exceptions.  Computing the geometric mean serves as the basis for an extended example illustrating a number of
techniques for making robust algorithms.

6.8.1.5.1. Overflow and underflow while finding the geometric mean

A general approach for using floating point exceptions is
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try
{

enable exceptions;
Do the calculation using a simple fast algorithm

}
catch (FloatingPointException e)

{
Repeat the calculation using a fault-tolerant algorithm

}

The common (non-exceptional) case uses a simple algorithm to perform the calculation.  If an exception occurs, the
calculation is repeated using a more sophisticated or fault-tolerant algorithm.  Exceptions can also be used to record
some information (such as a how many over/underflows have occurred) so that the calculation can be continued and
the answer adjusted at the end.

For example, the geometric mean of a series of positive real numbers is defined as follows:

x xii

n
n�

 

· 1

The “naive” version of the algorithm in Figure 25 simply multiplies all array elements together (in the
following geometric mean algorithms the input array is assumed to contain neither infinities nor NaNs).

double geometricMean(double array[])
{

double product = 1.0;

// check for zero length array
if(array.length == 0)

return NaNd;

// Iterate over the array elements
for (int i = 0; i < array.length; i++)

{
double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// Multiply the array elements together
product *= element;

}

// Return the nth root of the product
return Math.pow(product, 1.0/(double)array.length);

}

Figure 25 — Simple algorithm to compute the geometric mean.

The limitation of this simple algorithm is that for a large array, or an array containing extremely large or
small values, the variable product  can potentially overflow or underflow, returning infinity or zero even though
the answer is representable.  The ordering of the numbers in the array also affects whether or not a proper answer is
returned.  For example, using the following array of double  numbers with the above program

21023 21023 2-1023 2-1023

generates an overflow to infinity on the first multiply, while on a permutation of this array

21023 2-1023 21023 2-1023

the algorithm returns the correct answer of 1.0.
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double geometricMean(double array[])
{

double product = 1.0;
// first try the simple algorithm..

// check for zero length array
if(array.length == 0)

return NaNd;

try
{

enable overflow, underflow;
// Iterate over the array elements
for (int i = 0; i < array.length; i++)

{
double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// Multiply the array elements together
product *= element;

}

// Return the nth root of the product
return Math.pow(product, 1.0/(double)array.length);

}
// if the simple algorithm doesn’t work, try a more expensive one
catch(FloatingPointException e)

{
//call sophisticated program...

}
}

Figure 26 — Simple algorithm to compute the geometric mean, calls a robust algorithm when necessary.

One solution is to enable exceptions in the simple routine and if an overflow or underflow is encountered, to
fallback to a slower, more robust algorithm, as show in Figure 26.  However, the robust routine still needs to be
written.

Using the mathematical properties of the problem, another way to eliminate the troublesome exceptions is
to scale the array elements so that overflow or underflow never occur.  Knowing that floating point numbers are

represented internally as � ¹s e2 , the computation can be modified to use this identity as shown in Figure 27.
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Figure 27 — Rewriting the geometric mean.

This leads us to write the robust algorithm for calculating the geometric mean shown in Figure 28.
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static final double ln2 = Math.log(2.0);

double geometricMean(double array[])
{

double product = 1.0;
int exp_adjust = 0;  // assume exp_adjust will not experience integer overflow

// check for zero length array
if(array.length == 0)

return NaNd;

for (int i = 0; i < array.length; i++)
{

int e;
double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// Separate each array element into an integer exponent and a significand normalized
// to the range 0.0 < n < 2.0; accumulate the exponent and significand parts separately
e = (int) Math.logb(element); // logb(0) == –∞ does not occur, assuming no NaN’s or infinities in array
product *= Math.scalb(element, –e);
exp_adjust += e;

if (product >= 2.0)
{

product = Math.scalb(product, –1);
exp_adjust++;

}
}

// Calculate the nth root of the product, using either the pow method or the formula in Figure 27
return (exp_adjust == 0)

? Math.pow(product, 1.0/(double)array.length);
: Math.exp((Math.log(product) + (double)exp_adjust * ln2) / (double)array.length);

}

Figure 28 — Robust geometric mean algorithm without using exceptions.

This version works correctly for every case without using exceptions.  However, it is considerably slower
than the naive version, even though for most common inputs the naive version would have worked correctly.

As in this example, many robust numerical algorithms must perform a number of tests to ensure that the
algorithm works correctly for every possible input.  These tests often take longer to perform than the actual
calculation, and for most inputs they are not necessary.  A much better solution is to detect and handle the rare
troublesome inputs using exceptions.  In the algorithm in Figure 29, exceptions are used to detect when overflow or
underflow actually occurs, and only then perform scaling.
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static final double ln2 = Math.log(2.0);

double geometricMean(double array[])
{

double product = 1.0;
int exp_adjust = 0;  // assume exp_adjust will not experience integer overflow

// check for zero length array
if(array.length == 0)

return NaNd;

for (int i = 0; i < array.length; i++)
{

double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// First try finding the product using naive multiplication.
try

{
enable overflow, underflow;

 product *= element;
}

// If an overflow or underflow exception occurs, grab the scaled value of the product,
// and increment or decrement the exponent adjustment.  Then continue the calculation as before.
catch (OverflowException e)

{
product = e.doubleValue();
exp_adjust += Double.BIAS_ADJUST;

}
catch (UnderflowException e)

{
product = e.doubleValue();
exp_adjust –= Double.BIAS_ADJUST;

}
}

// Calculate the nth root of the product, using either the pow method or the formula in Figure 27
return (exp_adjust == 0)

? Math.pow(product, 1.0/(double)array.length);
: Math.exp((Math.log(product) + (double)exp_adjust * ln2)/ (double)array.length);

}

Figure 29 — Robust geometric mean algorithm using exceptions.

This version works correctly for every case and can potentially run almost as fast as the naive version.
Section 6.8.1.6 discusses how the loop in Figure 29 can be optimized to run quickly by changing trapping status less
often.

6.8.1.5.2. Presubstitution and Singularities

Presubstitution [60] is used to return values for functions known to behave poorly for certain input values, such as
singularities.  Presubstituted algorithms usually have the following general structure:
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try
{

enable exceptions;
Do the calculation using a simple algorithm

}
catch (FloatingPointException e)

{
Return a pre-computed value

}

That is, if the simple algorithm causes an exception because the method is ill-behaved for the given input, return
(presubstitute) a value pre-computed for that input.

Consider the sinc function, which is used extensively in signal processing:

sinc x
x

x
 

sin

This calculation is poorly behaved for x = 0 for this formulation of the sinc function since both sin x  and x are 0,
causing an invalid exception and generating a NaN.  By l’Hopital’s rule, this function has a removable singularity at
x = 0:
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Therefore, 1 is presubstituted when x = 0.  Implementing this using exceptions:

public static double sinc(double x)
try

{
enable invalid;
return Math.sin(x) / x;

}
catch (InvalidException e)// only ZeroOverZeroException can be generated, InfinityOverInfinityException cannot occur since sin(∞) is NaN

{
// Presubstitute one if division by zero occurs
return 1.0;

}

 Figure 30 — Using exceptions to implement presubstitution.

For the sinc function it may be less expensive and easier to simply test for 0.0 explicitly.

public static double sinc(double x)
{

If (x == 0.0)
return 1.0

else
return = Math.sin(x) / x;

}

However, for algorithms that involve loops, the cost of explicit tests in the inner loops can be larger than the
overhead for exceptions.

6.8.1.5.3. Floating point Exponent extension

Another use of floating point exceptions is to implement floating point numbers with extended exponents (and
therefore greater range).  One possible implementation of multiplying two double  numbers with extended
exponents is given in Figure 31.  In this implementation, adapted from [40], the wide exponent double  numbers are
not normalized after every operation; for faster execution normalization only occurs when the double  format
overflows or underflows.  This code resembles portions of the robust geometric mean algorithm in Figure 29.
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static WideExpDouble multiply(WideExpDouble x, WideExpDouble y)
{

WideExpDouble product = new WideExpDouble(0.0);

try
{

enable overflow, underflow;
// the exp fields are integers
product.exp = x.exp + y.exp; // add exponents when multiplying, assume integer overflow will not occur

// the sig fields are double  floating point numbers
product.sig = x.sig * y.sig; // multiply significands

}
catch(OverflowException e)

{
product.sig = e.doubleValue(); // use correct significand bits
product.exp += Double.BIAS_ADJUST;// and adjust exponent accordingly

}
catch(UnderflowException e)

{
product.sig = e.doubleValue(); // use correct significand bits
product.exp –= Double.BIAS_ADJUST;// and adjust exponent accordingly

}
return product;

}

 Figure 31 — Using exceptions for WideExpDouble  multiply.  Adapted from [40].

6.8.1.6. Compiling Floating Point Exceptions

As with most exceptions, floating point exceptions are assumed to be relatively rare events, so the common
non-exceptional case should be optimized to run quickly.  While simple code generation techniques can implement
the discussed exception behavior, the speed of the resulting code may be unacceptably slow.  On current
architectures, installing trap handlers and changing the trapping status involves non-negligible costs.  A Borneo
environment needs to install its own trap handlers, which in turn throw the desired Borneo exceptions. The Borneo
handlers can be installed once at the start of the program or, more generally, before any floating point operation that
may throw exceptions.  After the handlers are installed, the trapping status of the five conditions can be set
independently. Changing trapping status is likely to cause the floating point pipeline to be flushed.  Therefore, loops
which implicitly or explicitly change the trapping status of a condition may run considerably slower than expected.
While rather inelegant, the KOUNT mode described in [56] avoids the performance overheads associated with
changing trapping status.
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static final double ln2 = Math.log(2.0);
double geometricMean(double array[])
{

//Assume proper trap handlers have already been installed.
double product = 1.0;
int exp_adjust = 0;  // assume exp_adjust will not experience integer overflow

// check for zero length array
if(array.length == 0)

return NaNd;

for (int i = 0; i < array.length; i++)
{

double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// First try finding the product using naive multiplication.
try

{
try

{
// enable overflow, underflow;
setTrap(Math.OVERFLOW_FLAG | Math.UNDERFLOW_FLAG);

 product *= element;
}

finally
{

//restore non-trapping mode
setTrap(Math.NONE);

}
}

// If an overflow or underflow exception occurs, grab the scaled value of the product,
// and increment or decrement the exponent adjustment.  Then continue the calculation as before.
catch (OverflowException e)

{
product = e.doubleValue();
exp_adjust += Double.BIAS_ADJUST;

}
catch (UnderflowException e)

{
product = e.doubleValue();
exp_adjust –= Double.BIAS_ADJUST;

}
}

// Calculate the nth root of the product, using either the pow method or the formula in Figure 27.
return (exp_adjust == 0)

? Math.pow(product, 1.0/(double)array.length);
: Math.exp((Math.log(product) + (double)exp_adjust * ln2)/ (double)array.length);

}

Figure 32 — Example Java code with native  methods implementing Borneo program from Figure 29.

Figure 32 shows a straightforward translation of the geometric mean code from Figure 29 desugared into
Java with calls to native  methods manipulating the trapping status.  However, the code in Figure 32 changes
trapping status twice per iteration; the overhead of altering the floating point state dwarfs the time spent on
computation.  A more sophisticated compilation of the loop from Figure 29 is shown in Figure 33.  Using
information about the particular exceptions floating point operations can throw, the trap setting operations have been
moved outside the loop, allowing the code to run at nearly full speed in the common non-exceptional case.
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// move setTrap() outside of loop
try

{
setTrap (Math.OVERFLOW_FLAG | Math.UNDERFLOW_FLAG);
// loop body before the try  block cannot throw an overflow or underflow exception

for (int i = 0; i < array.length; i++)
{

double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// First try finding the product using naive multiplication.
try

{
// enable overflow, underflow;
product *= element;

}

// If an overflow or underflow exception occurs, grab the scaled value of the product,
// and increment or decrement the exponent adjustment.  Then continue the calculation as before.

// The code in the catch  clauses does not generate any floating point exceptions
catch (OverflowException e)

{
product = e.doubleValue();
exp_adjust += Double.BIAS_ADJUST;

}
catch (UnderflowException e)

{
product = e.doubleValue();
exp_adjust –= Double.BIAS_ADJUST;

}
}

}
finally

{
// The code in the catch blocks cannot throw floating point exceptions either so clearing the trapping status can be pulled outside of loop
setTrap (Math.NONE);

}

Figure 33 — Inner loop from Figure 32 transformed to minimize changing trapping status.

Since floating point exceptions are detected by hardware, no explicit exception-checking instructions are
needed in the virtual machine.  A degenerate (but portable) implementation of floating point exceptions could save
and test the flags around each floating point operation.26  While this implementation does not require writing a trap
handler, it introduces the explicit checking that using exceptions is meant to avoid.

6.8.2. Sticky Flags
The sticky flags work in partnership with the default IEEE non-trapping mode for handling exceptional conditions.
The flags are an alternate and sometimes less costly mechanism for handling floating point exceptions.  Flags record
that an exceptional condition occurred sometime during an aggregate computation.  The flag state can be inspected
after the computation is finished in contrast to exceptions, which interrupt a computation while it is running.  Within
a basic block, dependency-preserving permutations of floating point operations do not alter the flags raised by
executing the block.  Such code rearrangements are not necessarily legal with precise exception handling of floating
point exceptions.  Therefore, using flags instead of exceptions allows for better code scheduling.  (However, a single
sticky flag status register precludes speculatively executing floating point operations, such as hoisting a

                                                          
26 To implement trapping on underflow, testing the underflow flag is not sufficient since underflow is signaled
differently under trapping and non-trapping modes.  An underflow trap would occur whenever the result is
subnormal.
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loop-invariant floating point division outside of a loop.)  With judicious flag use, codes can effectively run at “full
speed” for usual inputs and special cases can be recognized and dealt with at the end of the computation if
exceptional conditions are encountered.

6.8.2.1. Specification

Augmented Java Syntax
ConstructorDeclaration:

Modifiersopt ConstructorDeclarator Throwsopt Admitsopt Yieldsopt ConstructorBody

MethodHeader:
Modifiersopt Type MethodDeclarator Throwsopt Admitsopt Yieldsopt

Modifiersopt void  MethodDeclarator Throwsopt Admitsopt Yieldsopt

StatementWithoutTrailingSubstatement:
FlagStatement

New Borneo Productions
FlagStatement:

flag  Admitsopt Yieldsopt Block Wavesopt

Waves:
WaveClause
Waves WaveClause

WaveClause:
waved  TrappingConditions Admitsopt Yieldsopt Block

Admits:
admits  TrappingConditions

Yields:
yields  TrappingConditions

TrappingConditions:
TrappingCondition
TrappingConditions ,  TrappingCondition

TrappingCondition: one of
overflow underflow divideByZero invalid inexact all none

Figure 34 — Changes to Java grammar to support IEEE 754 sticky flags.

Java includes in a method declaration the checked exceptions a method may throw.  These exceptions are part of the
method’s contract.  Similarly, the sticky flags that a method sets and the sticky flags examined from the caller’s
environment are also part of a method’s contract.  Therefore, Borneo adds this information to method and
constructor declarations; the admits  list specifies which of the caller’s flags the called method may inspect and the
yields  list specifies which flags a method may modify.  For example, the declaration admits overflow,
underflow  means a method can test whether its call occurred when the overflow or underflow flags were set.  The
declaration yields invalid  means the caller can determine if invalid was raised when the callee returned.  If a
method does not specify either admits  or yields , the defaults are admits all  and yields all .  These
defaults allow for easy inlining and these defaults imply methods that do not use floating point do not have to save or
restore the sticky flag state.  Blocks inside methods see and return the entire flag state.  At least in the initial version
of Borneo, a method overridden in a subclass must have the same flag signature as the method in the parent class.  In
the future, this could be relaxed to require the admits  list in  the overriding method in the child class to be a
superset of the admits  list of the method being overridden (covariance) and the yields  list be subset
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(contravariance).  If an interface inherits more than one method with the same type signature, the admits  and
yields  clauses of the inherited methods must be the same.  The flag effects of class initialization expressions are
not visible to methods in the executing program.

Table 10 lists the actions that need to be taken for a flag under each possible combination of admits  and
yields  settings for that flag.  Unless a flag is both admit ted and yield ed, the initial value of the flag must be
saved either to be restored upon method exit or to be merged with the flag status as a side effect of executing the
method.  An example desugaring is given in Figure 35.  Table 11 lists the operational meaning of various
combinations of admits  and yields  specifiers.  Declaring yields none  may allow more aggressive constant
folding and code motion inside a method.  Any method not dependent on the flag state of its caller can declare
admits none .

Table 10 — Actions needed for a sticky flag f under different admits /yields  settings.

admit  status for f yield  status for f On method entry On method exit
do not admit do not yield save current value of f restore saved value of f
do not admit yield save current value of f OR current value of f with saved value
admit do not yield save current value of f restore saved value of f
admit yield do nothing do nothing

Table 11 — Operational meanings of various flag signatures.

Flag signature Operational meaning
admits all,  yields all callee sees caller’s flag state, caller’s flag state reflects execution of callee
admits all,  yields none callee sees caller’s flag state, caller’s flag state preserved across call
admits none, yields all callee gets clean flag state, caller’s flag state reflects execution of callee
admits none, yields none callee gets clean flag state, callers state preserved across call

Borneo Code
void only_flags()

admits overflow, underflow yields invalid
{

Calculation

}

Equivalent Java code with native  methods
void only_flags()
{

int callers_flags;
//get caller’s current flags
caller_flags = getFlags();
//mask out unwanted flags
setFlags( caller_flags &

~(Math.OVERFLOW_FLAG | Math.UNDERFLOW_FLAG));
try

{
Calculation

}
finally

{
setFlags( (getFlags() & Math.INVALID_FLAG) |// isolate yielded flag

callers_flags); // ... and merge with caller’s
}

}

Figure 35 — Example desugaring of Borneo flag manipulation into Java with native  methods.

To conveniently control flag state inside a method, the new flag-waved  statement is used.  The flag-
waved  statement has a similar structure to the try-catch  statement; each flag  clause can be followed by zero
or more waved  clauses.  The flag  code block is executed until completion, then the first waved  clause with a
trapping condition matching a set flag is executed.  It is a compile time error for a single trapping condition to appear
implicitly or explicitly in more than one waved  clause for a given flag  statement.  The flag  and waved  clauses
can be modified with admits  and yields  specifiers in the same manner as methods.

Explicit getFlags  and setFlags  methods can be used to sense and manipulate an integer
representation of the flag state.  Individual flags may be set using a setFlag  method which takes two arguments,
the flags to set and a boolean value.  In addition to the flag manipulation methods, the Borneo Math  class also
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defines integer constants with bit patterns representing each flag position.  For example, bitwise ANDing the results
of getFlags  with Math.OVERFLOW_FLAG isolates the overflow sticky bit.

6.8.2.2. Examples Using Sticky Flags

Figure 36 contains several algorithms that compute the vector 2-norm.  Initially, a naive, fast approach is used; upon
completion the flags are consulted.  If an underflow or relevant overflow has occurred during the naive algorithm,
the slower robust algorithm recomputes the norm.  (As the computation progresses it is unknown whether or not
encountering underflowed values matters.)  This approach is preferable to always using the robust algorithm since
the naive code runs quickly in the common case.  Overflow and underflow exceptions could also be used, but halting
the naive algorithm on all underflow exceptions would lead to some unnecessary uses of the slow algorithm.

double norm(int n, double x[])
admits none // do not want previous flag state.
yields overflow, underflow // expose underflow and overflow when deserved.

{
int i;
double sum, scale_factor, adjustment=1.0;

// Attempt to compute the dot product x • x
// Will work in the vast majority of cases
flag

{
sum = 0.0;
scale_factor = 1.0
for (i=0; i<n; i++)

sum += x[i] * x[i];
}

// Check for overflow, underflow
waved overflow

{
double scaled_element;
// Repeat scaling down
Math.setFlag(Math.OVERFLOW_FLAG, false);// lower flag
scale_factor = Math.scalb(1.0, –640);
adjustment = 1.0 / scale_factor;
sum = 0.0;
for (i=0; i<n; i++)

{
scaled_element = scale_factor * x[i];
sum += scaled_element * scaled_element;

}
}

waved underflow
{

if sum < Math.scalb(1.0, –970))
{

double scaled_element;
// Repeat scaling up
scale_factor = Math.scalb(1.0, 1022);
adjustment = 1.0f / scale_factor;
sum = 0;
for (i=0; i<n; i++)

{
scaled_element = scale_factor * x[i];
sum += scaled_element * scaled_element;

}
Math.setFlag(Math.UNDERFLOW_FLAG, 0); // lower flag

}
}

return adjustment * sqrt(sum); // may overflow or underflow, as deserved
}

Figure 36 — Code to calculate two-norm of vector using sticky flags to improve average performance.
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Some of the geometric mean examples using exceptions can also be written in terms of flags as shown in
Figure 37.  Unlike the corresponding code in Figure 26, the loop in Figure 37 runs over the entire array if an
overflow or underflow occurs in the middle of the calculation.

double geometricMean(double array[])
{

double product = 1.0;

// check for zero length array
if(array.length == 0)

return NaNd;

// first try the simple algorithm..
flag

{
// Iterate over the array elements
for (int i = 0; i < array.length; i++)

{
double element = array[i];

// Check for illegal non-positive array elements
if (element <= 0.0)

return NaNd;

// Multiply the array elements together
product *= element;

}

// Return the nth root of the product
return Math.pow(product, 1.0/(double)array.length);

}
// if the simple algorithm doesn’t work, try a more expensive one
waved underflow, overflow

{
//call sophisticated program...

}
}

Figure 37 — Geometric mean algorithm using flags.

The relative speed of flags and traps to handle exceptional floating point conditions depends on a number of
factors.  Flag-based algorithms usually test for exceptional conditions periodically.  Between flag checks,
computation can occur on NaNs, infinities, and subnormals.  Some processors calculate more slowly on these special
values than regular floating point numbers.  Throwing floating point exceptions can stop a computation once a
special value is encountered, possibly improving the worst case performance, but code scheduling with precise
exceptions may be less aggressive than with flags, slowing down the common non-exceptional case.

6.9. Operator Overloading
From childhood people are trained to use infix operators when dealing with numerical expressions.  While prefix
functions do not lack expressiveness, infix operators are more familiar.  Operators are also more succinct than the
equivalent expression coded with methods.  For an extreme example, compare the two lines of the inner loop of
Figure 38, the actual code written in Java without operator overloading and the much shorter equivalent expression
with operator overloading.  The method ComputeSturmPolynomials  in Figure 38 computes the Sturm
sequence [90] of a polynomial.  Sturm sequences are used to count the number of real roots of a polynomial P which
lie in a given interval.  The sequence of polynomials resembles:
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where Q is P P P/ gcd( , )�  and only has simple roots.  Each polynomial in the sequence must be computed exactly
with no loss of precision; in practice, arbitrary precision rational numbers are used to guarantee this condition.
ComputeSturmPolynomials  computes the sequence using Java’s arbitrary precision BigInteger  class to
ensure accuracy.

Operator overloading also improves code reuse.  The code that operates on built-in integers can, with minor
editing (potentially as little as changing a few declarations), operate on non-basic types such as BigInteger .  For
example, a programmer might want to use high precision floating point numbers with Heron’s formula (see Table 6)
to lessen rounding problems when calculating the area of a triangle.  If operator overloading is available, the same
textual expressions can be used for built-in and user-defined types, such as high precision floating point.  Otherwise,
stark differences can result, as shown by the two representations of Heron’s equations in Figure 39.

Operator overloading reduces the differences between the behavior of primitive numeric types and
reference types.  On the downside, operator overloading does increase the complexity of the language, but the
increases in usability for the programmer outweigh the added compiler and language complications.  At least for
numeric types, operator overloading can also improve readability.  As with any language feature, operator
overloading can be misused, but that does not imply reasonable operator overloading is not worthwhile.  Borneo’s
operator overloaded is designed to support new numeric types and Borneo avoids certain excesses of previous
operator overloading schemes.



53

/**
* Poly == polynomial with BigInteger coefficients
*/

class Poly {
private int size;
private BigInteger coeff[];

public Poly(int maxSize);
public BigInteger GetAt(int n);
public void SetAt(int n, BigInteger val);
public void Set(Poly other);
public int GetDegree();

};

/**
* Given a polynomial, computes the sequence of Sturm polynomials.
* Arbitrary precision rationals or arbitrary precision integers
* are required to compute the sequence accurately, hence
* polynomials with BigInteger coefficients are used.
*/

void ComputeSturmPolynomials(Poly first[], Poly p[])
{

int i, j, k, n, n2;

// Initialize sequence
p[0] = first;
for (i=0; i<n-1; i++)

p[1].SetAt(i, first.GetAt(i+1).multiply(i+1));

for (i=2; i<first.GetDegree(); i++) {
// poly[i] = rem( poly[i-2] / poly[i-1] )
n2 = p[i-1].GetDegree();
// p[i] = p[i-2]
p[i].Set(p[i-2]);
while (p[i].GetDegree() >= n2) {

n = p[i].GetDegree();
for (j=n2-1; j>=0; j--) {

k = j+(n-n2);
// with operator overloading
// p[i][k] = p[i-2][k] * p[i-1][n2] - p[i-1][j] * p[i-2][n];

// without operator overloading
p[i].SetAt(k, p[i].GetAt(k).multiply(p[i-1].GetAt(n2)).subtract(p[i-1].GetAt(j).multiply(p[i].GetAt(n)))));

}
p[i].SetAt(n, 0);

}
}

}

Figure 38 — Code using BigIntegers  that would benefit from operator overloading.

Original code with operators
s = ((a + b) + c)/2;
return sqrt(s * (s - a)*(s - b)*(s - c));

Equivalent code without operators
s = ((a.add(b)).add(c)).divide(2);
return (((s.multiply(s.subtract(a)) ).multiply(s.subtract(b))).multiply(s.subtract(c))).sqrt();

Figure 39 — Equivalent code with and without operator overloading.

6.9.1. Operator Overloading and Value classes
There are two kinds of types in Java, reference types (classes) and primitive types (integer and floating point types
along with boolean ).  For new numeric types, it is desirable to have semantics analogous to the primitive types;
however, in Java all user-defined classes are reference types.  To address this discrepancy, Borneo has a third kind of
type, a value  class type (similar to a proposal by Bill Joy [54]), which has a mixture of the properties of reference
and primitive types.

When primitive types are assigned to one another, passed as arguments to a method, or returned from a
method, the value of one variable is copied into another.  Afterwards, there is no further sharing of state between the
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variables.  In contrast, the implementation of reference types copies pointers to objects on assignment, parameter
passing, and method return.  Therefore, if two references point to the same object and the object is modified by
access through one reference, the other reference sees the changes to the object.  Equality comparison also differs
between reference and primitive types:  reference types are checked for pointer equality, not equal values of the
fields of the objects being pointed to (this latter notion of equality is often provided by a class’s equals  method).
Casts behave differently on the two kinds of types:  casts between reference types do not actually generate a new
object while casts between primitive types create a new value.  Since Borneo adds operator overloading to create
new numeric classes, the value semantics of primitive types are appropriate for user-defined numeric classes.

Including operator overloading in a class should change the semantics of assignment, parameter passing,
and method return, as well as casting and comparison.  For efficiency reasons, in classes that use operator
overloading Borneo only changes the semantics of assignment, comparison, and casting, not parameter passing or
method return.  Using pass by reference for parameter passing and method return avoids overhead in copying
objects.  A disciplined programmer can avoid aliasing errors stemming from reference semantics for parameter
passing and method return (see the Complex  example in section 6.9.6.1).

Java does not currently have declarations to enforce call-by-value semantics with a call-by-reference
implementation.  In C++, there are reference parameters to const  objects; the reference points to the same object
throughout the lifetime of the method and the object pointed to is not modified.  (From an implementation
perspective, a C++ reference to a const  object is a const  pointer to a const  object.)  A method obeying these
restrictions has value semantics for that reference parameter.  Java 1.1 only has partial support for such declarations;
Java 1.1 allows parameters to be declared final .  A final  reference is analogous to a const  pointer (but not
analogous to a const  pointer to a const  object).  In Java, all the fields of a class may be declared final ,
meaning an object of that type cannot be modified after it is created.  However, this restriction applies to all objects
of that type; it cannot be declared on a per object basis.  One possible benefit to using value  classes is that (with
some analysis) objects can be allocated on the stack instead of the heap.27  Many common numeric types, such as
complex numbers, are small objects; heap allocation overhead may be the main cost of using these types.  Copying
large structures, such as matrices, is also prohibitively expensive.

Borneo has a new keyword value  that acts as a class modifier; only classes declared to be value  classes
can use operator overloading.  Value  classes can also call and declare traditional instance and static  methods.
Fields of value  class objects can be accessed in the usual manner.  All types in Java have a default value; for
reference types, the default value is null .  Therefore, to allow value  classes to behave like primitive types, before
any other operation is performed on a value  class variable, the variable is initialized by calling the
compiler-generated no-arg constructor for that class.  For arrays of value  class variables, the no-arg constructor is
called for each element.  Additionally, it is a compile-time error for null  to be assigned to a value  class variable.
These requirements imply that a value  class variable always points to an object before the variable can be used.

The operators acting on the primitive types have various relationships programmers can depend on.  For
example, a+= Expression  is semantically equivalent to a = a + Expression .  Maintaining such
relationships among value  class operators is the responsibility of the programmer.  The existence of one operator
does not cause the Borneo compiler to infer the existence of related operators.  For example, defining a >= operator
does not cause < to be inferred as !(a >= b)  nor is += inferred from + and =.  The return type of operators is not
constrained.  For example, an overloaded comparison operator can return a non-boolean type.  Programmers are
encouraged to implement value  classes having the expected semantics for their operators.

Borneo lets programmers overload most existing Java operators while also allowing novel user-defined
operators, such as **  for exponentiation, to be declared and overloaded.  Borneo aims to avoid past mistakes and
unnecessary complications stemming from operator overloading while providing a sufficiently flexible language
feature.

6.9.2. Overloading existing operators
In the definition of a value  class, an operator is declared by declaring a method named “op” followed by the text
of the operator being overloaded (the exact grammatical changes for Borneo operator overloading are given in
section 9.6).  For example, “op* ” is the name of an binary operator with the precedence and associativity of
multiplication.  All operators that can be overloaded are either unary or binary operators (except for a special ternary
                                                          
27 If an object cannot be referred to from variables outside of scope in which the object is created, the object can be
stack allocated.
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subscripting-assignment operator explained in section 6.9.2.4).  Operator methods have the same modifiers and
optional clauses as ordinary Borneo methods (throws  clauses, admits  and yields , etc.).  Table 13 lists the Java
operators that can be overloaded in Borneo.  The precedence, arity, and associativity of built-in operators cannot be
changed via operator overloading.  Both unary and binary + and -  can be overloaded in a given value  class.  A
unary operator must be an instance method taking no arguments.  In general, a binary operator may either be an
instance method taking one argument or a static  method taking two arguments.  If a binary operator has a left
hand operand of the type of the defining class, the operator must be a one-argument instance method instead of a
two-argument static  method.  When an existing operator is overloaded as a static  method, at least one of the
parameters must be a user-defined type and the second parameter must be the type of the class defining the operator.
Therefore, the meanings of existing operators on primitive types cannot be hidden by operator overloading.

In addition to the infix notation, operators may also be called by explicit dispatch using the method name of
the operator.  For example, in the following code, the call to op+  and to the infix + are equivalent.28

Complex b, c; double d;
b = c.op+(d);
b = c + d; // equivalent to explicit dispatch above

6.9.2.1. Operators as static  methods

Many object oriented languages, including C++ and Java, support calling methods by dispatching on an object; the
object is passed as a special implicit parameter to the method and the type of this object determines what set of
methods can possibly be called.  This presents an orthogonality problem for operator overloading and primitive
types.  It is easy to create a Complex  + operator that takes a Complex  number as the left operand and a double
as the right operand.  Borneo operators are typically desugared into method dispatch; however, the Complex  class
cannot declare an instance method that takes a double  as the left hand operand.  There is not even a double  class
that can be changed to interoperate with Complex .  Therefore, to allow expressions such as double_d +
Complex_c , the Complex  class needs to be able to define static  operators such as static  Complex
op+(double d, Complex c) .  Allowing the declaration of static  operators also allows value  classes to
declare operators that act on previously existing value  classes.29

If a class declares a static  operator (which must have two parameters), the second parameter
(corresponding to the right operand) must have the type of the class declaring the operator.  Operators declared to be
static  have different scoping rules than other static  methods.  For a binary operator with two value  class
arguments, there are two ways a callable method can be defined: an instance method in the class of the left operand
or as a static  method in the class of the right operand.  To resolve such a binary operator call, both possibilities
are considered; it is a compile-time error if an ambiguity exists between such methods.  Ordinary classes cannot
declare operators; therefore, to allow reference types to appear as the left operand, the value  class needs to declare
a static  operator.  Although the scoping of static  operators is different than for other static  methods, the
policy to resolve which operator method to call uses the same criteria as normal static  method resolution.  In
particular, the return type of an operator is not taken into account when deciding which version of an operator to call.
The implementation options for various operator overloading tasks are summarized in Table 12.

                                                          
28 The expression “c + d ” cannot appear alone as a statement in Java.  However, a method invocation followed by
a semi-colon does constitute a statement.  Therefore,

c + d; //expression cannot be a statement

is an error, while

c.op+(d);  //method invocation can be a statement

is not.
29 Some language, such as CLOS, support multi-methods where arguments other than the first (leftmost) can be used
to find an appropriate method to call.
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Table 12 — Operator overloading options in Borneo. U and V are value classes.

Operator overloading task Implementation options
Overload an existing unary operator

on a primitive or reference type illegal
on a value class V declare the operator as instance method in V, e.g.

V op-(){…} // unary negation

Overload an existing binary operator
both parameters are reference or primitive types illegal
left operand is of type V and the right operand has a
primitive or reference type, e.g.
+:V × double  → V

declare the operator as an instance method in V with one
parameter, e.g.
V op+(double d){…} // binary addition

left operand has a primitive or reference type and
the right operand is of type V, e.g.
+:double  × V → V

declare static  method in V with two parameters, e.g.
static  V  op+(double d, V v){…}

left operand is of type V and the right operand is of
type U e.g.
+:V × U → V

declare an instance method in V with one parameter, e.g.
V op+( U u) {…}
or
declare a static  method with two parameters in class
U, e.g.
static  V  op+( V v,  U u) {…}
(compile time error if both possibilities are defined)
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Table 13 — Existing unary and binary Java operators and whether or not they can be overloaded for value
classes in Borneo.

Operator Can be
overloaded

Must always be
an instance

method

Java Functionality
(b=boolean, i=integer, f=floating
point, n=numeric, r=reference)

[] yes yes subscripting
. no — member access
( params ) no — method call
expr ++, expr -- no — postfix increment/decrement

• n → n
++expr , -- expr no — prefix increment/decrement

• n → n
new (type) expr no — create new object
~ (unary) yes yes bitwise complement

• i → i
! (unary) no — logical negation

• b → b
+, -  (unary) yes yes indicate signs

• n → n
* , / , % yes no multiplicative

• n × n → n
+, - yes no additive

• n × n → n
<<, >> , >>> yes no shift

• i × i → i
instanceof no — dynamic type test

• r → b
<, >, >=, <= yes no relational

• n × n → b
==, != yes no equality

• n × n → b
• b × b → b
• r × r → b

& yes no bitwise AND
• i × i → i
• b × b → b

^ yes no bitwise XOR
• i × i → i
• b × b → b

| yes no bitwise OR
• i × i→ i
• b × b → b

&& no — logical AND
• b × b → b

|| no — logical OR
• b × b → b

=, +=, -= , *= , /= , %=, >>=,
 <<=, >>>=, &=, ̂ = , |=

yes yes assignment
• n × n → n
• b × b → b
• r × r → r
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6.9.2.2. Restrictions on value  Classes

Value  classes cannot implicitly or explicitly extend any other class, including another value  class, an abstract
class, or Object .  Constructors for value  classes may not explicitly invoke super .  Value  classes are implicitly
final ; a value  class can be explicitly declared final  as well.  Value  classes cannot implement interfaces.  It is
a compile-time error to give the instanceof  operator an expression having the type of a value  class.  It is also a
compile time error to try to use instanceof  to test for a value  class type.  The methods defined for Object
can be dispatched from a value  class object.  There are no legal coercions between value  classes and reference
types.  Unlike for reference types, a programmer cannot prevent the instantiations of a value  class by declaring all
constructors to be private .  For value  classes, the Borneo compiler always generates a default constructor that
cannot be overridden.

Value  classes have Class  objects created for them.  The getSuperclass  method returns null  for a
value  class.

6.9.2.3. Equality and assignment

A value  class does not have the usual definitions of assignment (=) and equality (==) operations on that type:
• = defaults to calling the assignment operator on each field in the order the fields are declared and returning

this .
• == defaults to calling the comparison operator on each field in the order the fields are declared and returning the

boolean  value of ANDing together the results of the memberwise comparisons.  The comparisons are
short-circuiting.  !=  is defined as the negation of ==.

If these definitions are not appropriate, the assignment and equality operators can be redefined by declaring op=  and
op==  methods, respectively.  The compiler generated assignment and equality methods may not be legal.  For
example, a value  class can overload == to return a type other than boolean .

Assignment must be an instance method but equality can be either an instance method or static  method
(subject to the restrictions in section 6.9.2.1).  Assignment and comparison can be overloaded to implement
interaction with primitive types.  For example, a Complex  class can have a method like

Complex op=(double d)
{

this.r = d;
this.i = 0.0;

}

to support statements such as:

Complex c;
c = 3.0;

The assignment is desugared into

c.op=(3.0);

Since Complex  is a value  class, c  is initialed before op=  is invoked, avoiding dispatching on a null  pointer.
Explicit constructors can still be invoked for value  classes.  Figure 40 gives a valid desugaring for an apparent
initialization of a Complex  object by a constructor.

Borneo Code with Operators
Complex c = new Complex(2.0, 1.0);

Equivalent Java code
Complex c = new Complex(); // call default constructor, assignment is pointer assignment
//operator name mangling to create a legal Java method name
c.op$3d(new Complex(2.0, 1.0));// copy newly created object into c

Figure 40 — Initialization and assignment of Borneo value classes.

6.9.2.4. Subscripting

Retrieving a value from an array using the subscripting operator and assigning into an array location using the
subscripting operator are two different operations having separate overloadable operators in Borneo.  The
subscripting operator used to retrieve values, [] , is a binary operator that must be defined as a one-argument
instance method.  The index can be of any type.  The subscripting operator can be used to support array-like access,
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for example, v[i]  where v  is a SparseVector .  However, the result of this subscripting operator cannot appear
as the left hand side of an assignment statement since (unlike C++) Java cannot return references to primitive values
and therefore cannot modify the array location.  To allow []  to be syntactically used both to retrieve a value from a
data structure and to change the data structure, Borneo has a special ternary []=  operator.  The operator []=  is an
instance method taking two arguments, the first argument is the index and the second argument is the expression
used for the assignment.  This ordering of parameters ensures the proper order of evaluation.  In a Borneo program,
whitespace, but not parentheses, can separate the right bracket, “] ”, and the “=”.  In Java a[0] = a[1]  and
(a[0]) = a[1]  are equivalent, but Borneo does not recognize the latter idiom as being  an instance of the []=
operator.  If a value class defines [] , []=  is not defined by the compiler.  If []=  is not defined, separate []  and
assignment methods are called.  Figure 41 gives a sample definition of the subscripting operators and Figure 42
shows a desugaring of both kinds of subscripting operator into Java method calls.

/**
* MyArray provides arrays whose first index is 1 instead of 0
*/

value class MyArray
{

private double data[]; // array of doubles

// constructors, other methods…
public double op[](int index)
{

return data[index–1];
}

public double op[]=(int index, double value)
{

return data[index–1] = value;
}

}

Figure 41 — Sample usage of the subscripting operators.

Borneo
MyArray a;
…
a[i] = a[i–1] + 4;

Equivalent Java Code
MyArray a = new MyArray();  //default constructor
…
// name mangling for legal Java methods names
a.op$5b$5d$3d(i, a.op$5b$5d(i–1) + 4)

Figure 42 — Desugaring of both kinds of subscripting operators.

6.9.2.5. Rationale

Not all existing operators can be overloaded in Borneo.  As shown in Table 13, most Java operators that act on
numeric values can be overloaded in Borneo, but operators that only act on boolean  values cannot be overloaded.
Operators with short-circuit evaluation, such as “&&” and “|| ” cannot be overloaded since they have different
evaluation rules than all other operators.  Since constructors are already overloaded, overloading new is not
required.  Some C++ uses for overloading new, such as controlling the details of memory allocation, are not relevant
in Java due to language features such as garbage collection.  Similarly, overloading “. ”, the member access operator,
seems undesirable.  Using overloaded “() ” to create iterators, as suggested in [89], can be useful but is not
necessary since iterators can be created conveniently using the inner classes added to Java 1.1 (although the current
version of Borneo is based on Java 1.0).  Overloading the compound assignment operators such as “+=” allows the
programmer to save the creation and copying of some temporary objects.  Avoiding unnecessary temporaries and
copying can be important if the numeric objects involved are large objects, such as matrices.  Although the present
version of Borneo only allows value  classes to overload operators, as long as overloading = and == was
prohibited, reference types could overload operators as well.

To avoid some ad hoc solution to differentiating expr ++ and ++expr , neither the prefix nor postfix
version of ++ or --  can be overloaded in Borneo.  C++ programs often overload prefix and postfix ++ to implement
“smart pointer” classes; however, such data types are not needed in Java due to garbage collection and the lack of
explicit pointer types.  Moreover, the Java definition of ++ on floating point types is not as meaningful as possible.
For integers, instead of adding 1, ++  can be thought of as the successor function, giving the next larger integer
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value.  Likewise, for floating point types, ++ could have been defined as the successor function, giving the next
larger floating point number (this functionality is given by nextAfter( number , infinity) ).  For
moderately large values, adding 1.0  to a floating point number does not result in a different value.  Once a floating
point number is larger than 2 raised to the number of bits in the significand, adding 1.0  is lost during rounding.  For
example, the float  type ranges over approximately ±1038 while adding 1.0  is lost to rounding on numbers with
magnitudes larger than approximately 106.  A related problem exists for numbers smaller than the rounding threshold
(≈10-8 for float ); the original number is rounded away when added to 1.0 .

Borneo operator overloading has similarities to a proposal made by Bill Joy [54] and to the operator
overloading mechanism in the Titanium language [47], [103].

6.9.3. Casting
Methods to cast a value  class to another type are declared as unary operators.  The name of a casting operator is
“op” followed by a space and the name of the target type; for example, double op double(){return r}  in
a Complex  class.  It a compile time error for the declared return type and the type name in a cast operator to be
different.  Otherwise, casting operators are treated similarly to other unary operators except that they cannot be
explicitly dispatched.  Borneo does not implicitly call user-defined casting operators to perform type conversion
during parameter passing or in other contexts.

6.9.4. Overloading novel operators
In addition to overloading existing operators, Borneo programmers can define novel operators not built into the
language.  Mathematical notation often uses operators other than +,- , * , and / , for example, transpose and inverse
on matrices.  Numerical analysts are acquainted with numerous such matrix operators available in packages like
Matlab.  Novel operators can be defined similarly to other overloading operators with the additional capability that
novel operators can have all their operands be primitive types.  All novel operators are either unary or binary.

6.9.4.1. Syntax of novel operators

To simplify compiler construction and to reduce the information a programmer must remember, Borneo conveys the
precedence and associativity of a novel operator via the characters constituting the operator.  In Borneo, if the
characters forming a novel operator have as a prefix the characters of a built-in operator, the novel operator has the
same precedence and associatively as the existing operator.  For example, op**  can be defined as a left associative
exponentiation operator with the same precedence as multiplication.  Since the parser must already distinguish unary
and binary + and - , both unary and binary operators can have “+” or “ - ”as a starting character.  New unary
operators can only start with “+”, “ - ”, or “~” since those characters start existing unary operators.  All operators
starting with other characters are binary. The characters [`@] that do not start any existing operator can also be used
to create novel binary operators; all such operators are left associative and have the same precedence as addition.  As
a result, a given textual operator has the same precedence and associativity in all Borneo programs.

Table 16 gives regular expressions specifying the novel operators that can be defined; the allowed operators
avoid some possible syntactic trouble with adding new operators.  Table 14 summarizes the syntactic restrictions on
novel operators.  The underscore character “_” can appear in both identifiers and operators.  This introduces a small
syntactic discrepancy between Java and Borneo.  The underscore character cannot start an operator, but it can start
an identifier and terminate an operator.  Therefore, in a Borneo program “a+_b ” is treated as a +_ b  while in a
Java program “a+_b ” is parsed as a + _b  where “_b” is a variable name.  This difference should rarely be visible
since user-named identifiers starting with an underscore should be uncommon.
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Table 14 — Syntactic restrictions on novel operators.

Operator Restriction Rationale
multi-character operators cannot have the
characters
“ ! ”, “ +”, “ - ”, or “~”
appearing after the first character.

Minimizes importance of whitespace in tokenizing a program, for
example
“a+^~b ”
can be interpreted as
 “a +^ (~b) ”
without any white space separating “^ ” and “~”.  Prevents a
unary or binary operator from having the text of another unary
operator as a suffix.

“ / ” cannot appear after the first character,
“ /* ” cannot be a prefix of an operator

avoid creating operators that conflict with comment syntax

do not allow “#” in operators do not thwart attempts at using the C preprocessor with Java
programs (“#” and “##” are preprocessor operators in ANSI C)

do not allow “$” in operators follows the Java standard’s suggestion that the dollar sign
character “should be used only in mechanically generated Java
code or, rarely, to access preexisting names on legacy systems”
(JLS §3.8).

Table 15 — Definitions used to ease defining operator syntax in Table 16.

Character Class Definition
OP_CHAR [`@%^&*_|<>?]

INIT_OP_CHAR [`@]

Table 16 — Flex style regular expression for novel operators.  The notation {OP_CHAR – ‘*’} means the set
difference of the characters represented by {OP_CHAR} and the character ‘*’.

Base Operator Regular expression
bitwise complement (unary) ‘~’{OP_CHAR}+

addition (binary and unary) ‘+’{OP_CHAR}+

subtraction (binary and unary) ‘-’{OP_CHAR}+

multiplication ‘*’{OP_CHAR}+

division ‘/’{OP_CHAR -‘*’}{OP_CHAR}*

remainder ‘%’{OP_CHAR}+

shifting “<<”{OP_CHAR}+ |
“>>”{OP_CHAR - ‘>’}{OP_CHAR}*

comparison ‘<’{OP_CHAR - ‘<’}{OP_CHAR}* |
‘>’{OP_CHAR - ‘>’}{OP_CHAR}* |
“<=”{OP_CHAR}+ |
“>=”{OP_CHAR}+

bitwise AND ‘&’{OP_CHAR -‘&’}{OP_CHAR}*

bitwise XOR ‘^’{OP_CHAR}+

bitwise OR ‘|’{OP_CHAR -‘|’}{OP_CHAR}*

completely novel {INIT_OP_CHAR}{OP_CHARS}*

6.9.4.2. Restrictions on novel operators

If at least one of the operands to a novel operator is of the type of the class defining the operator, overloading the
novel operator has the same restrictions as overloading existing operators (unary operators must be defined as
instance methods, etc.).  Novel operators acting solely on primitive or reference types must be declared as static
methods.  Unlike static  operators acting on value  classes, static  operators acting on only non-value  types
have same scoping rules as static  methods with simple names.  In other words, static  operators on non-value
classes can only be used in the defining class.  As a special case, the Math  class defines a number of static
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operators on primitive types; these operators are always available in all contexts.  Novel operator methods can be
explicitly dispatched.

6.9.5. Implementing Operator Overloading in JVM
Implementing Borneo value  classes is possible using existing JVM instructions that act on references and objects.
Borneo value  classes can be implemented as classes that inherit directly from Object .  It is illegal for a Borneo
program to observe a value  class variable as a null  pointer.  To enforce this invariant, the Borneo compiler
creates a default no-argument constructor that initializes each field of the value  class object to the default value for
that type.  This constructor is not dependent on any external program state.  Therefore, static value  class fields
can be initialized before other static  fields and value  class local variables can be initialized at the beginning of
the enclosing scope.  These policies prevent the programmer from seeing an uninitialized value  class variable.  The
initialization of value  class variables can also be enforced via a source-to-source transformation into Java.

All textual assignment operations to value  classes in a Borneo program are desugared into op=  method
calls.  Objects in Java are pass by reference, giving the appropriate semantics to parameter passing and method
return of value  class variables.

All method calls on value  class variables can be resolved at compile time since all value  classes are
final .  Therefore, while some static  operators have different scoping rules than other static  methods, this
difference can be hidden from the JVM.  A Borneo compiler must perform a source-to-source transform of
overloaded Borneo operators into legal Java method calls.  Since Java names cannot include characters such as “+”
and “- ” some name mangling scheme is needed to encode Borneo operator names in Java.  As shown in the
examples in sections 6.9.2.3 and 6.9.2.4, Borneo uses the “$” symbol as an escape in front of the lower case
hexadecimal ASCII code of each operator character.  For example, “op+^ ” is represented as “op$2b$54 ”.

6.9.6. Operator Overloading Examples
The following examples demonstrate a number of uses of Borneo operator overloading.

6.9.6.1. Complex  and Imaginary  Classes

As discussed in [63], having separate Complex  and Imaginary  types gives better numerical properties to
complex arithmetic.  The following code is a partial implementation of a Complex  class; overloaded equality and
assignment operators are shown as well as various addition operators.  An Imaginary  value  class is defined
similarly to the Complex  class.

public value class Complex
{
private double r; // real part
private double i; // imaginary part

// Constructors

// Implicit no arg constructor initializes a Complex object to zero
/* public Complex()

{
r = 0.0;
i = 0.0;

}
*/

public Complex(double r, double i)
{

this.r = r;
this.i = i;

}

public Complex(double r)
{

this.r = r;
this.i = 0.0;

}
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public Complex(Imaginary i)
{

this.r=0.0;
this.i = i.imag();

}

// Assignment and equality operators

public Complex op=(Complex c)
{

// update object in place, self-assignment is okay
r = c.r;
i = c.i;
return this;

}

// overload op=  on double  to interact with literals
public Complex op=(double d)

{
r = d;
i = 0.0;
return this;

}

public Complex op=(Imaginary i)
{

this.r = 0.0;
this.i = i.imag();
return this;

}

public boolean op==(Complex c)
{

return this.r == c.r && this.i == c.i;
}

public boolean op==(double d)
{

return this.r == d && this.i == 0.0;
}

public boolean op==(Imaginary i)
{

return this.r == 0.0 && this.i == i.imag();
}

// Arithmetic operations

// unary + operator
public Complex op+()

{
return new Complex(this.r, this.i);

}

// binary + operators

// +:Complex × Complex → Complex
public Complex op+(Complex c)

{
return new Complex(this.r + c.r, this.i + c.i);

}

// +:Complex × double  → Complex
public Complex op+(double d)

{
return new Complex(this.r + d, this.i);

}
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// +:double  × Complex → Complex
public static Complex op+(double d, Complex c)

{
return new Complex(c.r + d, c.i);

}

// +:Complex × Imaginary → Complex
public Complex op+(Imaginary i)

{
return new Complex(this.r, this.i + i.imag());

}

// +:Imaginary × Complex → Complex
public static Complex op+(Imaginary i, Complex c)

{
return new Complex(c.r, c.i + i.imag());

}

// Selected compound assignment operators
public Complex op+=(Complex c)

{
this.r += c.r;
this.i += c.i;
return this;

}

public Complex op+=(double d)
{

this.r += d;
return this;

}

public Complex op+=(Imaginary i)
{

this.i += i.imag();
return this;

}

// Casts
public double op double()
{

return r;
}

public Imaginary op Imaginary()
{

return new Imaginary(i);
}

// Utility functions
public double real()

{
return r;

}

public double imag()
{

return i;
}

public String toString()
{

return "" + r + " + " + i + "i";
}

}



65

6.9.6.2. Exponentiation

The Borneo Math  class includes three exponentiation operators (one for each primitive floating point type) that call
appropriate versions of the pow method.  The exponentiation operator is written “** ” as in FORTRAN.  Since the
leading character of “** ” is “* ”, the exponentiation operator has the same precedence as multiplication and is left
associative (not right associative as in customary in mathematical notation).  Therefore 2.0 ** 3.0 ** 3.0

evaluates to 512.0 ((23)3) instead of 134217728.0 (23
3
).

6.9.6.3. Quiet Comparison Operators

One of four mutually exclusive relationships can hold when comparing two IEEE floating point numbers, the first
may be greater than the second, they may be equal, the first may be less than the second, or the two numbers could
be unordered.  The unordered relation occurs when at least one of the arguments is a NaN.  Therefore, in IEEE
arithmetic, a < b ≠ !( a >= b) due to the unordered relation.  The standard calls for quiet comparison operators that
include the unordered relation.  When the usual comparison operators other than == and !=  act on a NaN, the
standard requests the invalid flag be set.  The operators that mention unordered are quiet; they do set the invalid flag
on a NaN argument.  Thus, while the logical value of the quiet operators is expressible with combinations of existing
operators, the lack of setting the invalid flag cannot be expressed using current Java floating point operators.30

Table 17 — New quiet comparison operators.

Operator Meaning
<? less than or unordered
<=? less than, equal to, or unordered
>? greater than or unordered
>=? greater than, equal to, or unordered

For example, “a >= b ” following the IEEE 754 standard returns true if a is greater than b or if a is equal
to b and signals invalid if either operand is a NaN.  In contrast, “a >=? b ” returns true if a is greater than b,  if a
is equal to b, or if a is unordered with respect to b.  In addition,  “>=?” does not signal invalid if any of its operands
are NaN.  While the logical value of  “>=?” can be composed from other comparisons and the invalid flag can be
discarded if raised, distinguishing such operators can allow better compilation since the total effect of “>=?” and
related operators can be gotten from one machine instruction on many platforms.  Table 17 catalogs Borneo’s new
comparison operators. Figure 43 give a Borneo implementation of “>=?”.  These operators are included in Borneo’s
Math  class for all three floating point types.

An alternate proposal for the functionality of “>=?” is to use “!< ” (not less than) instead [56].  In IEEE
floating point, “greater than, equal to, or unordered” has the same logical value as “not less than.”  The first proposal
is clearer since the operators’ characters list when the relation returns true (“>=?”, true if greater than, equal to, or
unordered) as opposed to when the relation returns false (“!< ”, false if less than).  Additionally, the “>=?” syntax is
closer to the notation used in the standard document.  While using questions marks in operators that act on NaN may
imply to some that NaN is undefined, programmers using such comparison operators should be familiar enough with
the details of the standard to differentiate undefined from unordered.

                                                          
30 In JVM, the current instructions for comparing floating point numbers return a code of –1, 0, or 1 depending on
whether the first argument is less than, equal to, or greater than the second.  Therefore, all floating point comparison
operators must use the same instructions; there are no existing quiet instructions nor can existing separate strict
equality instructions be redefined to not signal.  Therefore, the Borneo Virtual Machine defines the current floating
point comparison instructions to signal on NaN and adds new comparison instructions that are quiet.  This means
floating point equality in Borneo a program compiled down to BVM will use different opcodes than the program
compiled with Java to JVM.
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static final boolean op>=?(float a, float b)//all flag effects of evaluating the arguments will have taken place in the proper order
admits none yields none

{
// Not yielding any flags is a little too strong, if one of the operands is a signaling NaN, the comparison
// operator should signal.  However, since signaling NaNs are not included in Borneo and since
// signaling NaNs are not created as the result of an arithmetic operation, this detail will be overlooked.
// Since comparisons can only generate the invalid signal, yielding “none” as opposed to “overflow, underflow, inexact, divideByZero”
// is correct.
return a >= b || Math.unordered(a,b);

}

Figure 43 — Code for an unordered comparison operator.

6.9.6.4. Rounding Mode Operators

Certain algorithms, such as a straightforward interval arithmetic implementation, need to control the rounding mode
at a fine granularity, potentially switching rounding modes at each floating point operation. 31  For such codes, using
the rounding  declarations is awkward and verbose.  To alleviate this problem, rounding mode operators are added
to the Math  class. The operators are declared final , allowing them to be readily inlined.  For example, the code in
Figure 44 implements an addition operator on float  arguments that rounds toward positive infinity.  Table 18 lists
the syntax of the new operators. The rounding mode operators also provide a convenient mechanism to specify the
rounding mode of a few operations within a block of code influenced by a rounding  declaration.  Rounding
versions of addition, subtraction, multiplication, and division are provided for all primitive floating point types.

static final float op+^(float a, float b)// operands evaluated in proper order
{

rounding Math.TO_POSITIVE_INFINITY;
return a + b;

}

Figure 44 — Method body for a rounding mode operator.

Table 18 — Rounding mode operators for addition.  Other rounding operators for subtraction,
multiplication, and division are defined analogously.

Operator Meaning
a +@ b round toward 0
a +^ b round toward +∞
a +_ b round toward –∞
a +% b round toward nearest

A consistent mnemonic scheme is needed to name the new rounding mode operators.  The extra characters
should imply the direction of rounding.  The operators “+/ ” to round up, “+\ ” to round down, and “+>“ to round to
zero would have had a clear meaning, but are unworkable for various reasons.32  The combination “// ” conflicts
with Java comment notation, “\ ” is involved with UTF escapes to encode Unicode characters, and “-> ” is the
dereferencing operator in C.  Instead, the operators in Table 18 are used.  Caret “^ ” is near the top of the character
vertical space implying “up,” while underscore “_” is at the bottom implying “down.”  The at sign “@” resembles
zero in a circle and “%” is meant to convey that the nearer of two choices is selected.

Figure 45 and Figure 46 show interval addition and multiplication written using the rounding mode
operators.

                                                          
31 Interval arithmetic uses two rounding modes, round toward positive infinity and round toward negative infinity.
The rounding mode changes in interval arithmetic can be eliminated by rewriting the expressions to use only one
rounding mode, either to positive infinity or to negative infinity [82].  See section 6.12.4 for examples.
32 The language FORTRAN-SC [97] uses “+>” to round toward positive infinity and “+<” to round toward negative
infinity.
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Interval add(Interval a, Interval b)
{

double lower_bound, upper bound;

lower_bound = a.lower_bound +_ b.lower_bound;
upper_bound = a.upper_bound +^ b.upper_bound;

return new Interval(lower_bound, upper_bound);
}

Figure 45 — Core computation for interval addition using rounding operators.

Interval multiply(Interval a, Interval b)
{

double lower_bound, upper bound;

lower_bound = min( a.lower_bound *_ b.lower_bound, a.lower_bound *_ b.upper_bound,
a.upper_bound *_ b.lower_bound, a.upper_bound *_ b.upper_bound);

upper_bound = max( a.lower_bound *^ b.lower_bound, a.lower_bound *^ b.upper_bound,
a.upper_bound *^ b.lower_bound, a.upper_bound *^ b.upper_bound);

return new Interval(lower_bound, upper_bound);
}

Figure 46 — Core computation for interval multiplication using rounding operators.

6.9.7. Interaction of Numeric Types
Java performs automatic widening promotions of numeric types in a number of contexts, including assignment
statements and parameter passing.  For example, a method taking a double  parameter can be given a float
argument and the float  is automatically widened to double ; an explicit cast is not needed.  Figure 47 shows the
Java numeric type width hierarchy.

Basic Integer Types

 Basic Floating
 Point Types

byte

shortchar

int

long

float

double

Figure 47 — Java numeric width hierarchy. Conversions for indigenous  can easily be added.
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Value  classes are used to implement new numeric types.  Figure 48 gives the desired numeric width
relationships between primitive types and new Borneo numeric classes.  Ideally, the Borneo compiler could perform
the same sort of automatic conversions for value  classes as performed for primitive types.  An obvious candidate to
encode the width information is to use the subtype relationship between classes, but this approach is not workable.

Borneo does not allow value  classes to subclass one another.  Putting that aside, the subtype relationship
is not a suitable candidate for representing the width relationship between classes.  If subtyping were used to guide
compiler generated conversions, the automatic numeric widening conversions correspond to allowing a subclass to
be used wherever the superclass can be used.  Therefore, the widest numeric type must be at the top of the subtyping
hierarchy.  Java has single inheritance, implying a numeric type can only have one immediately wider type (since a
class only has one immediate parent in the subtyping relationship).  However, the width relationship in Figure 48 has
several types that are immediately wider than another type.  For example, WideExpDouble  and
DoubledDouble  are both immediately wider than double  (double  in this instance can be thought of as a class
instead of a primitive type).  The constraints of the subtype relationship together with the desired width relationship
imply a total ordering of all numeric types.  Such a total ordering is not meaningful; which should be “wider”
WideExpDouble  with greater range or DoubledDouble  with greater precision?  How should an arbitrary
precision class such as Extended  compare to Interval ?  Since the existing subtype relationship is not suitable,
some other mechanism is needed to implement useful conversions between value  classes.  Multiple inheritance
could be used to better model the width relationship, but that would introduce great complexity into the language.  A
separate declaration could be used to indicate numeric width, but Borneo’s existing operator overloading can
implement the desired functionality.
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Basic Integer Types

Basic Floating Point Types

BigInteger

BigDecimal

PseudoInt

WideExpFloat

WideExpDouble

WideExpIndigenous

DoubledDouble

Extended

ExtendedInterval

Interval

indigenous

byte

shortchar

int

long

float

double

 Figure 48— Desired width hierarchy for Borneo.  Ovals represent primitive types and boxes represent value
class.  Bold arrows indicate existing widening conversion performed among primitive types.  Conversions

represented by narrow arrows need to be inferred or synthesized.

Overloaded operators and methods can provide to a user the same convenience as compiler-generated
conversions (at the cost of more work for the class implementor).  For example, the widening of float  to double
during addition can be implemented with the method signatures in Table 19.  While the number of operators that
need to be defined grows quadratically with the depth of the width hierarchy, Java’s existing types form most of the
levels of the width relationship in Figure 48.  Therefore, the writer of a value  class only has to provide methods
interfacing with the top of the Borneo width hierarchy and with at most a few levels of other value  classes.

Table 19 — Function signatures modeling Java arithmetic promotion rules (f = float, d = double).

Function Signatures Operational Meaning
+:f × f→ f f + f → f
+:f × d → d (double) f + d → d
+:d × f → d d + (double) f → d
+:d × d → d d + d → d

6.10. Anonymous Values
In the evaluation of numeric expressions of more than two terms, temporary values are needed to hold the
intermediate results.  Since these anonymous temporary values are not explicitly declared by the programmer, some
convention is needed for determining the types of these locations.  Borneo naturally extends the familiar Java rules to
include the indigenous  type.  For primitive numeric types, if at least one of the operands of a numerical operation
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is of type indigenous , then the operation is carried out on indigenous  values, and returns an indigenous
result.  If the other operand is not of type indigenous , it is first widened to indigenous  via numeric
promotion.  Otherwise, the existing Java rules are used.  However, to accommodate the x86, Borneo relaxes Java’s
requirement that intermediate results for float  and double  operands must be rounded to exactly float  or
double  length.  Borneo only requires that the significand bits be rounded to float  or double .33  To achieve
exact float  or double  rounding, an explicit store of the intermediate result into a variable of the appropriate type
can be performed.  (Explicitly storing to temporaries still exhibits the double rounding problem on underflow
discussed in section 6.1).

6.10.1. Widest Available and anonymous  declarations
Augmented Java syntax
LocalVariableDeclarationStatement:

AnonymousValueDeclaration ;

New Borneo Productions
AnonymousValueDeclaration:

anonymous  FloatingPointType

Figure 49 — Modification to Java’s grammar to support Borneo’s anonymous  declaration,

The convention Java and Borneo use to determine the width of anonymous values is called strict evaluation.  Other
rules for determining the size of anonymous values are preferable in some circumstances.  One set of rules used in
some older Fortran versions as well as in pre-ANSI C is widest available, where locations of type indigenous  are
used to store any intermediate results. Depending on the architecture the intermediate locations may be registers or
actual memory locations.

The widest available strategy makes best use of the double extended  registers on the x86 and can lead
to more accurate results on all platforms.  The programmer could certainly implement the widest available policy by
casting all the operands to indigenous , but such programming is tedious and results in code difficult to read and
maintain.  To ease producing code employing the widest available policy, Borneo adds a new declaration
anonymous  FloatingPointType where FloatingPointType can be any of the primitive floating point types, float ,
double , or indigenous .  An anonymous  declaration is in effect until the end of the block or until the next
anonymous  declaration.  As with rounding  and enable /disable  declarations, an anonymous  declaration
in the initialization of a for  loop has influence over the rest of the loop construct.

All the intermediate results of floating point expressions in scope of an anonymous  declaration have types
at least as wide as the type in the anonymous  declaration, not the type inferred from strict evaluation rules.  If the
type inferred from strict evaluation is wider than the type in an anonymous  declaration, the strict evaluation rule is
used instead (see Figure 50).  Since anonymous  declarations are intended to preserve precision, losing precision by
implicitly narrowing operands is not supported.  If all the operands in an expression are of the same type as the type
given in an anonymous  declaration, the declaration does not change the semantics of the expression.  Since
anonymous  declarations cannot be used to implicitly narrow operands, anonymous float  does not change the
evaluation of floating point expressions.  Therefore, anonymous float  specifies to use strict evaluation.  Such a
declaration is useful when strict evaluation is desired in a portion of code under the influence of another
anonymous  declaration.

indigenous mac(indigenous a, indigenous b, indigenous c)
{

anonymous double;
return (a * b) + c; //anonymous  declaration ignored, type of operands wider than the anonymous  type

}

Figure 50 — Ineffectual use of an anonymous  declaration.

To preserve the precision of the result, instead of simply having the anonymous locations be of the
(presumably) wider type, all the leaves of the expression tree are first converted to the target type before any
                                                          
33 The Limbo [20] programming language’s only floating point type is a double  precision real  and Limbo only
requires that the significand to be rounded to double  precision.
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arithmetic is performed.  Figure 51 shows one possible desugaring of an expression under the influence of an
anonymous  declaration into equivalent Java code.  Borneo’s anonymous  declarations alter Java’s conventions
concerning implicit narrowing conversions.  In a block with an anonymous  declaration, implicit narrowing
between floating point types can occur when the type of the target of an assignment or return statement is no wider
than the type given in the anonymous  declaration.  In other words, strict evaluation rules are used for floating point
types wider than the type in an anonymous  declaration.  In Java, implicit narrowing only occurs across compound
assignment statements.  Implicit narrowing does not occur for method arguments since the types of a method’s
arguments select which method is called.34  If a floating point variable or literal is given as an argument to a method,
if the type of that argument is narrower than the type of an enclosing anonymous  declaration, the argument is
widened to the anonymous  type.  To avoid this behavior, an explicit cast can be used, see Figure 52 for examples.

Borneo Code35

static float mac(float a, float b, float c)
{

anonymous double;
return a * b + c;

}

Equivalent Borneo Code
static float mac(float a, float b, float c)
{

float f;
anonymous double;
f = a * b + c;
return f;

}

Equivalent Java code using explicit promotions
static float mac(float a, float b, float c)
{

float f;
//anonymous double
//promote float  values to double

f = (float)((double)a * (double)b + (double)c);
return f;

}

Figure 51 — Example desugaring of Borneo anonymous  declarations into Java.

{
float f=1.0f;
double d = 2.0;
indigenous n = 3.0n;

anonymous double;
Math.abs(f); //calls double abs (double)
Math.abs(d); //calls double abs (double)
Math.abs((float)f); //calls float abs (float)
Math.abs(((float)f)); //calls float abs (float)
Math.abs(f + 0.0f); //calls double abs (double)
Math.abs((float)(f + 0.0f));//calls float abs (float)
Math.abs(n); //calls indigenous abs (indigenous) , anonymous  declaration has no effect
Math.abs(n + 0.0); //calls indigenous abs (indigenous) , anonymous  declaration has no effect

}

Figure 52 — Method resolution and anonymous  declarations.

For an expression to have its types affected by an anonymous  declaration, a built-in numeric operator
does not have to be explicitly present or implicitly present through a compound assignment operator such as “+=”.
In particular, implicit narrowing can occur in simple assignments between variables of different widths.  For
example, for the assignment and return expressions in Figure 53 the compiler generates implicit narrowing
conversions.

static float assign(float a, double b)
{

anonymous double;
a = b; //implicit narrowing cast generated by the compiler, illegal without anonymous  declaration
return b; //implicit narrowing cast generated by the compiler, illegal without anonymous  declaration

}

Figure 53 — Implicit narrowing and the anonymous  declaration.

                                                          
34 C++ can either widen or narrow numeric arguments during method resolution (widening is preferred to
narrowing).  However, Borneo does not aim to introduce all the complications of C++ into Java.
35 The code in this example does not implement a float  fused mac.  While the result of multiplying two float
numbers is exactly representable in a double , when the third float  is added to the product and rounded back to
float , a different answer can result than if the infinitely precise result was rounded to float  [59].
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Floating point to string conversions stemming from the “+” or “+=” operators are not affected by
anonymous  declarations.  If an operator in a block with an anonymous  declaration has floating point and integer
operands, the integer operand is also promoted to the type specified by the anonymous  declaration.

In the current version of Borneo, a user-defined numeric type cannot be used as the type for an
anonymous  declaration.  In particular, there is no locution to conveniently express anonymous double
extended  to emulate the evaluation policy of machines where indigenous  is double extended  on
machines where indigenous  is double .  Since only hardware supported formats can be indicated by the current
anonymous  declaration, the performance of code influenced by an anonymous  declaration should not differ
much from the same code without the anonymous  declaration.  However, once Borneo library’s numeric types are
better specified, the ability to declare “anonymous double extended ” may be added.  In general, if
user-defined types were to be used for anonymous  declarations, orthogonality requires automatic coercions from
both primitive floating point types and “narrower” value  class types.  However, the current Borneo type system
does not indicate the width of a numeric type, making generating automatic coercions problematic.

Although novel operators are added to the Math  class, anonymous  declarations have the same effect on
expressions using novel operators as expressions using just built-in operators.  The new operators added in the Math
class have type signatures of the form op:α × α → α, that is the operands and return value all have the same type.
Therefore, the anonymous  declarations will have the same effect on built-in and novel operators as long as the
novel operators are provided for each precision and have homogeneous type signatures.  Borneo’s anonymous
declarations are not without precedent; the language Numerical Turing [48] supports scoped precision declarations
that can be varied at runtime among arbitrary decimal precisions.

The canonical example benefiting from the widest available evaluation is the dot product computation as
shown in Figure 54.  Using extra precision, even just double  precision with float  data, to accumulate the
pairwise products eliminates intermediate overflow and underflow.  Similarly, using double extended  to
accumulate a double  dot product also removes the possibility of intermediate overflow or underflow.  However,
double extended  does not have as much additional precision compared to double  as double  has to float .

Borneo Code
float dot(float[] a, float[] b)
{

indigenous sum = 0.0n;

if(a.length == b.length)
{

for(int i = 0; i < a.length; i++)
{

anonymous indigenous;
sum += a[i] * b[i];

}
return sum;

}
else

return NaNf;
}

Equivalent Borneo Code without an anonymous  declaration
float dot(float[] a, float[] b)
{

indigenous sum = 0.0n;

if(a.length == b.length)
{

for(int i = 0; i < a.length; i++)
{

// anonymous indigenous;
sum += (indigenous)a[i] * (indigenous)b[i];

}
return (float) sum;

}
else

return NaNf;
}

Figure 54 — Dot product computation using anonymous  declaration.

Heron’s formula from section 6.7.1 also benefits from being evaluated with wider formats for the
intermediate results.  Table 20 (repeating some data from Table 6) shows that while Heron’s formula with float
input is unstable when evaluated using strict evaluation, Heron’s formula is stable and correct when evaluated using
anonymous double  and rounding the final answer back to float .
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Table 20 — Heron’s formula evaluated using strict and widest available expression evaluation polices.

Rounding
Mode

Heron’s Formula
s a b c

s s a s b s c

 � �

¹ � ¹ � ¹ �

(( ) ) /

( ) ( ) ( )

2

(strict evaluation in float  precision unstable)

Heron’s Formula
(anonymous double

evaluation with float  data
stable)

a=12345679, b=12345678, c=1.01233995 > a – b
to nearest 0.00 972730.06

to +∞ 17459428.00 972730.06
to -∞ 0.00 972730.00
to 0 -0.00 972730.00

a=12345679, b=12345679, c=1.01233995 > a – b
to nearest 12345680.00 6249012.00

to +∞ 12345680.00 6249012.50
to -∞ 0.00 6249012.00
to 0 0.00 6249012.00

6.10.2. Scan for widest
In addition to strict evaluation and widest available, a third expression evaluation policy, scan for widest, is
advocated by some for giving better numeric results [24].  In scan for widest the expression (and the destination in
case of an assignment) is scanned to find the widest numeric type used.  Then, all the leaves of the expression are
widened to the widest type in the entire expression.  The intention of scan for widest is to relieve programmers from
finding loss of precision bugs in their numeric codes.

Like the widest available policy, scan for widest is not needed for expressibility; the programmer can insert
the necessary coercions.  Scan for widest is primarily useful when many precisions running at varying speeds are
combined; if only a single precision is used, scan for widest gives the same results as strict evaluation.  While a
limited version of scan for widest was added to a FORTRAN compiler [24], the type systems of Java and Borneo are
very different from that of FORTRAN.  Since Borneo allows new user-defined numeric types, for orthogonality, scan
for widest should be used for both primitive and user-defined types, or not all.  Scan for widest also complicates
method resolution even when only primitive types are used.  Due to these issues, investigating adding scan for widest
to Borneo is left as future work.  However, a user-defined class, such as arbitrary precision floating point numbers,
can implement its own scan for widest policy by building up a data structure and delaying evaluation until
assignment occurs.  This technique is similar to expression templates in C++.

6.11. Threads
In addition to the state contained within each Java thread, a Borneo thread also contains the rounding mode, sticky
flags, and enabled exceptions status.  In a thread context switch, these values are saved as part of the outgoing
thread’s state.  The incoming thread’s values are then installed.  New threads do not inherit the floating point state
from another thread.  A new thread starts in the default floating point state (flags cleared, round to nearest,
non-trapping mode).  When a thread dies, its floating point state is not merged with the any other thread; in
particular, the sticky flag state is not merged with another thread’s.

Saving and restoring the floating point state maintains the thread’s integrity across context switches.  If this
thread state is not preserved, consistency problems can arise.  For example, if one thread enabled floating point
exceptions and then was context-switched out, the incoming thread might perform floating point operations
expecting exceptions to be disabled.  Since the new thread would not expect any exceptions to be thrown, it would
not be written to perform exception recovery.  Rounding mode, sticky flags, and trapping status must be changed
when the context switch takes place.
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6.12. Optimizations

Java implementations must respect the order of evaluation as indicated explicitly by parentheses and
implicitly by operator precedence.  An implementation may not take advantage of algebraic identities such as
the associative law to rewrite expressions into a more convenient computational order unless it can be proven
that the replacement expression is equivalent in value and in its observable side effects, even in the presence
of multiple threads of execution (using the thread execution model in §17), for all possible computation
values that might be involved. [JLS §15.6.3]

Borneo extends Java’s existing requirement of equivalent value and observable side effects to include IEEE 754
floating point state and floating point exceptions.  Therefore, some optimizations legal in Java are forbidden in
Borneo.  Java’s source code precise exception handling, well specified order of evaluation, and respecting of
parentheses are all preserved in Borneo.  Both JVM and native code generation issues are considered in the
following discussion.

6.12.1. Preserving IEEE Floating Point semantics
Table 38 in Appendix 9.1 demonstrates that very few of the field axioms hold for floating point arithmetic.  From an
optimization standpoint, commutativity of addition and multiplication, and eliminating multiplying by 1.0  are the
only useful field axioms valid for Borneo floating point arithmetic.   As detailed in [94], even seemingly benign
transformation such as replacing x * 0.0  by zero and replacing x - 0.0  by x  are not correct under IEEE 754
arithmetic.36  However, IEEE 754 arithmetic enjoys many useful properties not shared by other floating point
arithmetics.  For example, on IEEE machines multiplying by 1.0  never causes an overflow, unlike multiplication
under Cray arithmetic.37

6.12.2. Order of evaluation
Java mandates left to right evaluation of operands, left to right evaluation of parameter lists, and that operands must
be evaluated before an operation begins.  In Java, these rules do not totally inhibit reordering floating point
operations since no Java floating point operations throw exceptions and the flag state cannot be inspected.  Although
Borneo allows inspection of the flag state, this has minimal effect on code scheduling for non-trapping code.  The
flag effects of floating point operations are commutative and associative; as long as floating point operations are not
moved across accesses to the flag state, any dependency-preserving ordering can be used.  If floating point
exceptions can be thrown, more care must be taken during code scheduling or additional work must be done by the
trap handler and catch  clause to modify the state so that it appears that a precise exception occurred.  For Java,
[17] recommends adapting the debugging optimized code techniques from [44] to the problem of maintaining the
appearance of precise exceptions.  If the sticky flag state must be maintained, floating point operations cannot be
executed speculatively.  For example, hoisting a division with loop invariant arguments outside of a loop cannot be
performed; if the loop never executed, the division could raise spurious flags.  However, this problem can be averted
by peeling the loop instead of performing code hoisting.  In loop peeling, one iteration of the loop is executed
unoptimized and subsequent interations reuse shared values.

6.12.3. Constant Folding , Common Subexpression Elimination, and Dead Store Elimination
Constant folding is the evaluation of constant expressions at compile time instead of runtime.  By default, without
additional analysis, constant folding float  and double  values cannot be done inside a Borneo method due to
possible changes to the method’s flag effects or exceptions thrown.  If floating point exceptions are enabled, constant
folding must also preserve the appropriate semantics.  If a floating point operation does not set any flags, including
the inexact flag, that operation can be folded while preserving Borneo semantics.  If the inexact flag is not raised, an
operation has the same value under all rounding modes (except for x – x  = ±0.0  where the sign of zero depends
on the rounding mode).   However, constant folding cannot be done on indigenous  values since the size of

                                                          
36 x * 0.0  is not 0.0  when x  is a NaN.  The expression x - 0.0  does not have the same sign as x  if x  is +0.0 .
37 On a Cray, the floating point number 1.0  is represented as 0.5·21.  During a multiply, the exponents of the two
factors are added and the resulting exponent is checked for overflow before normalization.  Therefore, for all the
floating point numbers with the maximum exponent, multiplying by 1.0  will overflow since the maximum exponent
range will be exceeded before normalization would adjust the exponent back into representable range.
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indigenous  is not known until runtime.38  If the inexact flag set by a floating point operation can be proved not to
affect the outcome of the computation, some additional constant folding can be performed.  However, if an operation
sets the inexact flag, the runtime rounding mode must be a constant.39  Since the flag effects of initializing static
class variables are not seen by rest of the program, constant folding (under round to nearest) can be performed on
those expressions.

Common subexpression elimination must be aware of the rounding mode and trapping status in effect when
an expression is calculated; “common” subexpressions must be calculated under identical rounding modes and
trapping status.

The standard allows copying a signaling NaN to signal invalid, implying that without further analysis dead
stores cannot be eliminated.  However, since Borneo does not include the semantics of signaling NaNs, such
transformations can still take place.

6.12.4. Rounding Modes
Knowing the rounding mode statically at compile time enables the compiler to perform specialized optimizations to
eliminate dynamic rounding mode changes.  When compiling to native code, the Alpha architecture can specify in
each floating point instruction which rounding mode to use.   Therefore, when the rounding mode is known statically,
the costs of changing  rounding mode dynamically can be eliminated.40  More generally, in a given section of code, if
all operations round to either ±∞ (as is the case in interval arithmetic), changing rounding mode more than once can
be avoided entirely by rewriting the expressions to use only a single rounding mode via the identities in Table 21
[82].  For a given machine, the compiler can determine if the cost of the extra negations outweighs the costs of
changing rounding modes.  Figure 55 and Figure 56 show the interval arithmetic skeletons from section 6.7.5.2
rewritten and optimized to run under a single rounding mode.  If trapping on overflow or underflow, these identities
cannot be used without additional analysis since a different value would be reported to the trap handler (and
therefore a different value would be returned if a type Value  method of the exception were called).

Table 21 — Identities relating arithmetic when rounding to ±infinity.

a +^ b ≡ –(–a +_ –b) ≡ –(–a –_ b)
a –^ b ≡ –(–a –_ –b) ≡ –(–a +_ b)
a *^ b ≡ –(–a *_ b) ≡ –(a *_ –b)
a /^ b ≡ –(–a /_ b) ≡ –(a /_ –b)

a +_ b ≡ –(–a +^ –b) ≡ –(–a –^ b)
a –_ b ≡ –(–a –^ –b) ≡ –(–a +^ b)
a *_ b ≡ –(–a *^ b) ≡ –(a *^ –b)
a /_ b ≡ –(–a /^ b) ≡ –(a /^  –b)

                                                          
38 If all the indigenous  values fit without loss of information into double  and the operations are also exact,
constant folding can be done on indigenous  values.
39 Some additional constant folding may be possible if the set of possible rounding modes is known.  For example,
for positive results, rounding to zero and rounding to negative infinity give the same answer.  For negative results,
rounding to zero and rounding to positive infinity are equivalent.
40 The Alpha devotes two bits in arithmetic opcodes to encoding the four possible rounding modes.  However, since
the standard calls for fully dynamic rounding modes, one of the four bit patterns is used to indicate the rounding
mode is taken from the floating point control register.  Therefore, one of the rounding modes (round to positive
infinity) cannot be encoded in the instruction and can only be accessed by setting the dynamic rounding mode
appropriately.  But, all computations using round toward positive infinity can also be performed under round toward
negative infinity at the cost of selectively negating operands and results.

As explained in section 6.7.3, the Alpha’s static round to nearest encoding cannot be used by default in
Borneo.
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Interval add(Interval a, Interval b)
{

double lower_bound, upper_bound;

rounding Math.TO_NEGATIVE_INFINITY;
lower_bound = a.lower_bound + b.lower_bound;

// use only a single rounding mode
upper_bound = –(–a.upper_bound – b.upper _bound);

return new Interval(lower_bound, upper_bound);
}

Figure 55 — Core computation for interval addition using only one rounding mode (adapted from Figure 17).

Interval multiply(Interval a, Interval b)
{

double lower_bound, upper_bound;

rounding Math.TO_NEGATIVE_INFINITY;
lower_bound = min( a.lower_bound * b.lower_bound, a.lower_bound * b.upper_bound,

a.upper_bound * b.lower_bound, a.upper_bound * b.upper_bound);

// use only a single rounding mode, move negations outside of reduction and switch from max to min
upper_bound = –min( –a.lower_bound * b.lower_bound, –a.lower_bound * b.upper_bound,

–a.upper_bound * b.lower_bound, –a.upper_bound * b.upper_bound);

return new Interval(lower_bound, upper_bound);
}

Figure 56 — Core computation for interval multiplication using only one rounding mode (adapted from
Figure 18).

6.13. Compiler Implementation Issues
An initial Borneo implementation can be built on top of a modified Java infrastructure using native  methods to
access a processor’s IEEE 754 floating point features.  Optimizations legal in Java must be inhibited, otherwise a
JVM or JIT could violate Borneo semantics.  Better code could be generated if a Borneo specific bytecode were
available as a target instead of JVM.  For example, native  methods can be used to implement operations on the
indigenous  type in current JVM systems, but only with a possibly significant performance penalty;
indigenous  opcodes could easily avoid this overhead.  Additionally, a Borneo compiler is more naturally written
in Borneo.  For example, checking the inexact flag after an operation to aid constant folding is readily done in
Borneo but only done slowly and with difficulty in Java (such as by simulating the floating point operations in
integer arithmetic).  Having a new extension for Borneo programs, “.born ”, avoids name clashes with existing Java
programs.  Files with a “.java ” extension compiled under Borneo are compiled with Borneo’s floating point
semantics but do not have access to rounding  declarations, operator overloading, and other Borneo features using
new syntax.

6.13.1. Keywords
Borneo adds many new character sequences that are reserved by the compiler, either as keywords such as
rounding , enable , and disable , or as floating point literals such as NaNf , and infinityD  (see section 9.5).
While the floating point literals probably would not usually conflict with identifiers in existing Java code, these new
keywords are only available in Borneo programs..

6.13.2. Operator Overloading
The new operators are designed not to cause lexing and parsing difficulties, but operators tend to be only a few
characters long so a simple typo could easily choose an unintended operator, potentially complicating syntactic error
recovery.  Allowing “_” in operator names introduces a minor syntactic disparity between Java and Borneo; variable
names starting with underscores may be parsed differently by a Borneo compiler than a Java compiler.  Operator
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methods have many rules and restrictions ordinary methods do not, complicating the language implementation.  The
semantics of value  classes are somewhat contradictory, inviting certain kinds of programming errors.

6.13.3. Type System
In Borneo, certain static  operators have different scoping rules than other methods, changing the set of possible
methods that can be called.  However, once all the candidate methods are identified, the existing Java method
overloading resolution rules are used.

The admits  and yields  attributes are new to the type system and overriding methods must preserve the
flag signature of the overridden method.

The anonymous  declarations introduce additional circumstances where the Java compiler must generate
implicit narrowing casts.  The method resolution rules are also changed for certain situations involving anonymous
declarations.

6.13.4. Borneo and Java Compilation differences
While a Java program cannot determine if another Java program has been compiled under Borneo floating point
semantics, Borneo programs can in general determine if Java’s more permissive floating point semantics have been
utilized.  For example, due to less aggressive constant folding, a Java program compiled under Borneo may set more
sticky flags than the same program compiled under Java semantics.  Therefore, compiling the same Java source
program under Java and Borneo semantics can result in differing class  files.

6.13.4.1. Floating point optimizations

As described in section 6.12.3, certain optimization legal in Java, such as floating point constant folding and
common subexpression elimination, are applicable in fewer situations in Borneo.

6.13.4.2. Floating point equality

Borneo defines the floating point equality and inequality operations (== and != ) to not signal invalid on a NaN
input.  All other floating point comparisons in Borneo do signal invalid on a NaN input.  Neither Java nor JVM
include the IEEE 754 sticky flags and JVM uses a pair of instructions to implement all floating point comparisons.
Since a Borneo program differentiates between floating point equality and other comparisons, different instructions
must be used (or the flag state must be saved and restored around some floating point comparisons).

When Java source code is not available for recompilation to use Borneo comparison semantics, a class
file converter could recognize the idioms for floating point !=  and == and generate a new class  file with the
appropriate semantics.  If a Borneo bytecode were available as a target, new quiet comparison instructions could be
used.  Otherwise, the comparison idiom has to be embedded in an instruction sequence that stores the current
trapping status, turns off trapping on invalid, saves the current value of the invalid flag, performs the comparison,
clears the invalid flag, restores the status of the invalid flag, and restores the previous trapping status.

6.13.4.3. Class initialization

To implement Borneo semantics, the class initialization process must save and restore the floating point state around
initialization of a newly loaded class.  This must be done so that the flag effects of initializing static  fields are not
visible to the rest of the program.  To accomplish this, the <clinit>  method ([66] §3.8) generated by a Borneo
compiler must save and restore the flag state (admits none yields none ).  The <clinit>  method must
also always run under round to nearest.  The class initialization process must initialize value  class objects before
they can be otherwise used.
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7. Borneo Virtual Machine Specification
Nothing endures but change.

—Heraclitus

The Java Virtual Machine is the cornerstone of Sun’s Java programming language.  It is the component of the
Java technology responsible for Java’s cross-platform delivery, the small size of its compiled code, and
Java’s ability to protect users from malicious programs.

The Java Virtual Machine is an abstract computing machine.  Like a real computing machine, it has
an instruction set and uses various memory areas. [66]

The semantics of JVM, the Java Virtual Machine, are strongly coupled to those of Java.  JVM is primarily intended
as a portable intermediate format for Java.  Since Borneo semantics differ from Java semantics, JVM might not be an
ideal intermediate format for Borneo.  Assuming a JVM implementation is running on a fully IEEE 754 compliant
processor, existing Java compilers along with native  methods to access IEEE 754 features should be able to
implement much of Borneo’s new functionality.  Operations on indigenous  values could be implemented as
native  method calls.  While that would be rather expensive in an interpreter, an optimizing JIT (Just In Time)
compiler could eliminate much of the overhead if the indigenous  methods were recognized as deserving special
treatment, such as aggressive inlining.  A JIT could also recognize native  methods that changed the rounding
mode, sensed the sticky flags, and changed the trapping status as portions of the program that could affect other
floating point operations.  These changes would amount to adding IEEE 754 semantics to JVM, but the most natural
manner to add IEEE 754 semantics in JVM is to add instructions implementing the relevant functionality.

Attracted by a generally available, machine-independent platform, implementors of other languages are
turning to the Java Virtual Machine as a delivery vehicle for their languages.  In the future, we will consider
bounded extensions to the Java Virtual Machine to provide better support for other languages. [66]

The JVM specification states future expansion is possible to better support other languages.  Moving from
Java 1.0 to Java 1.1 and onwards to Java 1.2 entails supporting new Java API classes that require changes to JVM
implementations; a Java 1.0 interpreter cannot run all Java 1.1 programs.  For example, Java 1.1 adds reflection, the
ability to inspect what classes are currently loaded and extract information about the fields and methods of those
classes.41  Clearly a Java 1.0 interpreter/JIT would not necessarily be able to support such capabilities.  A meaningful
implementation of the weak references in Java 1.2 mandates changes to the garbage collection process.42  While Java
1.2 supports these modifications without adding new opcodes, the implementation of the Java runtime must change.
Introduced in Java 1.1, the Java Native Interface (JNI) for calling native  methods also requires changes to a JVM
environment.43  Since the JVM already uses IEEE 754 encoding of floating point numbers, adding full IEEE 754
support is another reasonable extension.

It would be possible to support Borneo’s new features by adding a “magic” class having methods that
interface with the IEEE features of the underlying processor.  Instead a new bytecode, the Borneo bytecode, is
proposed to better integrate IEEE 754 features into the JVM.  An implementation of the Borneo bytecode is referred
to as a Borneo Virtual Machine, BVM.  BVM offers a proper superset of the functionality of the JVM.  The new
bytecode must continue to support all the design goals supported by the existing JVM bytecode, including
verification, compactness, and efficiency.44  However, BVM is not just intended for Borneo:  other languages

                                                          
41 Intended uses of reflection include writing debuggers and class browsers.
42 Weak references (or weak pointers) are pointers that do not prevent an object from being garbage collected; if only
weak pointers point to an object, the object can be deallocated.  Weak pointers are useful for a variety of tasks.  For
example, weak pointers can be used to maintain a list of all objects representing files so the files’ buffers can be
flushed periodically [99].  Weak pointers are also used to implement the hash consing optimization for functional
languages.  If a new cons cell would have contents identical to an existing cell, a hash consing system returns a
pointer to the existing cell instead of allocating a new cell.  A hash table with weak pointers is used to find an
existing cell with the given value [5].
43 Microsoft’s omission of JNI (among other Java 1.1 features) in its supposedly Java 1.1 compliant product Internet
Explorer 4.0 prompted a lawsuit from Sun.
44 This document will not actually provide a mapping of new instructions to new numeric opcodes; instead, several
options for adding the instructions are offered.
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wishing to use IEEE 754 features should be able to target BVM as well.  Therefore, in some ways BVM has a more
permissive floating point semantics than Borneo; for example, trapping status is not a static property in BVM
although it is in Borneo.

7.1. indigenous  Floating Point Type
The type indigenous  is a new floating point type corresponding to the widest floating point type implemented
with direct hardware execution on a particular processor.  On many machines indigenous  is the same as
double , but on the x86 and 68000 series of processors, indigenous  is the 80 bit double extended  format.
Each of the primitive floating point types currently in Java (float  and double ) is supported by its own set of
typed bytecode instructions. Since indigenous  is being added as a new basic type, it must also have its own set of
typed instructions.

New comparison, stack manipulation, memory access, format conversion, and arithmetic operation
instructions are needed to support indigenous .  Table 22 through Table 26 enumerate the new opcode
mnemonics and their stack effects, modeled after the format given in the JVM specification [66].  These new
opcodes are analogous to the current instructions that support float  and double  and they should map easily to
the appropriate underlying hardware instructions.  In JVM, there are six comparison instructions for each integer
type (equal, not equal, less than, less than or equal, etc.).  However, each floating point type only has two
comparison instructions (the instructions differ in their handling of NaN).  A JVM floating point comparison returns
–1, 0, or 1 depending on if the first operand is less than, equal to, or greater than the other.  BVM has additional
non-signaling comparison instructions.  All BVM arithmetic instructions, except for remainder, follow the IEEE 754
standard.

By definition, the actual size of indigenous  values is platform dependent.  On platforms on which
indigenous  is equivalent to double , two words of stack space suffice to hold an indigenous  value.45  On
platforms where indigenous  is equivalent to double extended , three entries are needed.  However, since the
BVM bytecode must be portable across all platforms, indigenous  entries in the constant pool are always three
words (96 bits).  While a naive implementation may always manipulate three stack entries for indigenous , on
platforms where indigenous  is actually double , indigenous  values may safely be treated as two stack
entries.  Therefore, Table 22 through Table 26 use the notation value1.words to indicate where two to three stack
entries are actually manipulated  The size of indigenous  is platform-dependent and fixed for a given BVM
implementation; it would be neither meaningful nor correct to treat indigenous  values sometimes as two words
and sometimes as three words during execution of a single program.  Since the size of indigenous  values varies,
separate stack manipulation instructions are needed for the indigenous  type.

Table 22 — New comparison opcodes for the indigenous  type.

Operation Opcode Mnemonic Stack
Compare indigenous ncmpg, ncmpl …,value1.words,value2 .words⇒

…,result

                                                          
45 JVM defines an abstract notion of “word.”  The lower bound on the size of a JVM word is 32 bits since a word
must be able to hold a float .  However since a reference or native pointer must also fit into one word ([66] §3.4),
on 64 bit architectures a JVM word may actually be 64 bits.  A JVM interpreter or JIT is not obliged to actually use
a full 64 bit word to hold a 32 bit value (nor to use two 64 bit words to hold a single 64 bit value, such as a double
or long ).  Only the program semantics need be maintained; alignment and padding are implementation details.
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Table 23 — New memory opcodes for the indigenous  type.

Operation Opcode Mnemonic Stack
Load indigenous  from array naload …,arrayref,index ⇒

…,value.words
Store indigenous  into array nastore …,arrayref,index, value.words ⇒

…
Load indigenous  from local
variable

nload index … ⇒
…,value.words

Store indigenous  into local
variable

nstore index …,value.words ⇒
…

Push indigenous  from constant
pool (wide index)46

ldc_nw index1 index2 … ⇒
…, value.words

Return indigenous  from method nreturn …,value.words ⇒
[empty]

Table 24— New stack manipulation opcodes for the indigenous  type.

Operation Opcode Mnemonic Stack
Duplicate indigenous 47 dupn …,value.words⇒

…,value.words,value.words
Pop indigenous popn …,value.words⇒

…

Table 25 — New conversion opcodes for the indigenous  type.

Operation Opcode Mnemonic Stack
Convert indigenous  to double n2d …,value.words ⇒

…,result.word1,results.word2
Convert indigenous  to float n2f …,value.words ⇒

…,result
Convert indigenous  to int n2i …,value.words ⇒

…,result
Convert indigenous  to long n2l …,value.words ⇒

…,result.word1,result.word2

Convert double  to indigenous d2n …,value.word1,value.word2 ⇒
…,result.words

Convert float  to indigenous f2n …,value ⇒
…,result.words

Convert int  to indigenous i2n …,value ⇒
…,result.words

Convert long  to indigenous l2n …,value.word1,value.word2 ⇒
…,result.words

                                                          
46 Performs a runtime conversion discussed in section 7.1.1.
47 Unlike other dup commands which operate on any type of data (as long as two-word values are not treated as
single words), dupn is a typed dup instruction that only operates on indigenous  values since the size of
indigenous  is variable across implementations.  The other stack manipulation instruction for indigenous
values, popn, is similarly typed.
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Table 26 — New arithmetic opcodes for the indigenous  type.

Operation Opcode Mnemonic Stack
Add indigenous nadd …,value1.words,value2 .words⇒

…,result.words
Divide indigenous ndiv …,value1.words,value2 .words⇒

…,result.words
Multiply indigenous nmul …,value1.words,value2 .words⇒

…,result.words
Negate indigenous nneg …,value.words ⇒

…,result.words
Subtract indigenous nsub …,value1.words,value2 .words⇒

…,result.words
Remainder indigenous nrem …,value1.words,value2 .words⇒

…,result.words

Besides adding opcodes, a new base type for indigenous , N, needs to be added so that field descriptors
for methods and variables can indicate the new type ([66] §4.3.2).  As shown in Figure 57, a new constant pool tag
and entry are also needed ([66] §4.3.2).  The newarray instruction is modified to enable the creation of
indigenous  arrays, indicated by using the new atype T_INDIGENOUS=12.

CONSTANT_Indigenous = 13

CONSTANT_Indigenous_info {
u1 tag;
u4 high_bytes;
u4 middle_bytes;
u4 low_bytes;

}

Figure 57 — Additions to JVM constant pool structures to support indigenous .

Part of the code attribute of a method in a class  file is max_stack , “the maximum number of words on
the operand stack at any point during the execution of the method” ([66] §4.7.4).   Since the actual size of
indigenous  present at runtime is unknown, a conservative estimate of max_stack  is computed assuming each
indigenous  value takes three stack words.

A number of existing JVM instructions must be modified to accommodate the indigenous  type.  Table
27 shows that the getfield and getstatic instructions are modified so that they may return up to three words of an
indigenous  value.  Similarly, the putfield and putstatic instructions are modified so that they accept the two to
three words of a indigenous  value.  Since the puts and gets of static  values do not happen until runtime,
indigenous  static  values to do not require the portable encoding used for indigenous  literals.  Objects can
use the local size of indigenous  as can static  fields.  The wide instruction modifies the behavior of nload and
nstore in the same manner as other load and store instructions.  Expressions involving the indigenous  type are
not considered constant.

Table 27 — Instructions with new stack signatures to operate on the indigenous  type.

Operation Opcode Mnemonic Additional Stack Signature
fetch field from object getfield …,objectref ⇒

…,value.words
get static  field from class getstatic … ⇒

…,value.words
set field in object putfield …,objectref,value.words⇒

…
set static  field in class putstatic …,value.words⇒

…
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7.1.1. Decoding indigenous  Constant Pool Entries
As mentioned in section 6.1, when an indigenous  value is used at runtime, some computation must be done since
the size of indigenous  varies from machine to machine.  Simply rounding a double extended  representation
of a number to double  on systems where indigenous  is implemented as double  is not sufficient since double
rounding can occur.  To minimize changes to JVM, BVM provides a single instruction to decode indigenous
constant pool values at the cost of a somewhat elaborate encoding.  The BVM ldc_nw instruction takes a constant
pool representation of an indigenous  value and computes the appropriate correctly rounded double  or double
extended  value.  Using a clever encoding for indigenous  limits the amount of computation needed.  Borneo
pseudocode implementing the conversion algorithm is given in Figure 58 (the algorithm is not quite Borneo code
since the algorithm must have dynamic trapping status).  In the common case, a floating point addition and some
integer operations need to be performed; the less common case requires some additional effort.  The ldc_nw
instruction can signal overflow and underflow if indigenous  is implemented as double  and can always signal
inexact regardless of the format implementing indigenous .  If the conversion does not signal, the value does not
need to be recalculated for each access.48  The corresponding encoding for indigenous  literals in the constant
pool is discussed in section 7.1.2.

indigenous constant_pool_convert(double component1, float component2)
admits none
yields overflow, underflow, inexact

{
// For correct behavior, this method must run with the trapping environment of its caller.
// This code works if indigenous  is implemented as double  or as double extended .
rounding Math.TO_NEAREST;
indigenous result;
int test;

// need to extract trailing 8 bits from the float  component, bitwise convert float  to integer and mask
test = Float.floatToIntBits(component2) & 0x000000FF;

if(test == 0)  // double  only, float  first, or double  first encoding is being used (see section 7.1.2)
{

// Assume both components are scaled appropriately.
// The addition may signal inexact and overflow, inexact and underflow, just inexact, or nothing at all
return (indigenous)component1 + (indigenous)component2;

}
else // scaled sum encoding is being used

{
// zero out the test bits before performing the add to avoid spurious inexact signals
component2 = Float.intBitsToFloat(Float.floatToIntBits(component2) & 0xFFFFFF00);

// this addition may signal inexact but not overflow or underflow
result = (indigenous)component1 + (indigenous)component2;

// set sign of test to be the same sign as the exponent of result
if(Math.abs(result) < 1.0n)

test *= –1;

//scalb signals overflow or underflow with inexact and returns infinity or zero if appropriate
return Math.scalb(result, 128 * test);

}
}

Figure 58 — Pseudocode to convert indigenous  constant pool entries to correctly rounded double  or
double extended  values.

                                                          
48  Therefore loading indigenous  literals is a suitable candidate for a new _quick instruction; see section 7.6 for
an explanation of _quick instructions.
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7.1.2. Encoding indigenous  Constant Pool Entries
In general, storing indigenous  values can require the full 15 exponent bits and 64 significand bits of the double
extended  format.  Many other floating point values more likely to occur do not require the large range available in
double extended ; most floating point literals that occur in programs probably lie within the exponent range of
float .  Borneo uses this assumption to design an encoding for indigenous  constant pool entries so that
indigenous  values within the range of normalized float  numbers can be decoded quickly.  The overall strategy
is to construct the value of an indigenous  literal from the sum of a float  number and a double  number.  The
layout of an indigenous  constant pool entry is given in Figure 59; there are two components, a double
component and a float  component.  Not all the significand bits of the float  component are needed to hold the
significand of the indigenous  value; the low order bits of the float  component are used as test bits to indicate
if a slower decoding algorithm supporting a larger exponent range needs to be used.  The remainder of this section
presents the details of encoding indigenous  literals in the constant pool; it is assumed that the decimal to binary
conversion process can provide the necessary significand bits to encode a double extended  value (along with
additional guard, round, and sticky bits to provide proper rounding to double ).

95 32 31 8 7 0
double  value float  value test bits

Figure 59 —  96 bit Encoding used to represent indigenous  values in the constant pool (figure not drawn
to scale).

The constant pool encoding for indigenous  special values is given in Table 28.  Adding two NaNs does
not generate the invalid signal.  Adding two like-signed zeros always produces a zero having the same sign as the
inputs.

Table 28 — Representation of special indigenous  values in the constant pool.

indigenous  value double  component float  component
NaNn NaNd NaNf

+infinityN +infinityD +infinityF
–infinityN –infinityD –infinityF

+0.0n +0.0d +0.0f
–0.0n –0.0d –0.0f

For general indigenous  floating point numbers, as summarized in Table 29, four different constant pool
encodings are used depending on the range and precision of the floating point value being represented.  The first
encoding, called double  only, is used when an indigenous  number is exactly representable as a double ; in
that case, the indigenous  number is represented by setting the value of the double  component appropriately and
setting the float  component to zero.  A different approach is needed when the full 64 significand bits of a double
extended  value need to be represented (double  only has 53 significand bits).  To ensure proper rounding to both
double  and double extended , at least 67 bits of precision must be present in any general indigenous
encoding (64 bits for double extended  plus guard, round, and sticky bits for proper rounding [59]).  The total
number of significand bits in a double  and a float  is more than adequate to encode a properly rounded
indigenous  value; therefore, where possible, an indigenous  constant should be constructed by promoting a
float  component and a double  component to indigenous  and then adding.  The float  first and double
first encoding schemes use this technique.

In the float  first encoding, the float  component of the indigenous  constant pool entry holds the
most significant bits of the number and the double  component holds the trailing bits, as shown pictorially in Figure
61.  The float  first encoding can be used for indigenous  values whose unbiased exponent lies between –127
and 127.49  Somewhat larger values can be represented with the double  first encoding, where the double
component holds the leading bits and the float  component the trailing bits (Figure 62).  The exponent range of the
double  first encoding is constrained by a float  value having to represent bits adjacent to the double ’s least

                                                          
49 Although float  values with a normalized exponent of –127 are subnormal, since these values are promoted to
indigenous  (which is at least as wide as double ) unnecessary computation on subnormals is avoided.
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significant bit.  The double  only encoding is not simply a special case of double  first since the double  only
encoding can represent values over the full exponent range of double , –1022 to +1023.

Table 29 — Representations of normal indigenous  values in the constant pool.

Encoding Properties of
indigenous  number n

double  component float  component

double  only exactly representable as a
double

double  representation of n 0.0f

Full precision needed
float  first    –127 ≤ logbn (n) ≤ 127

   (see Figure 61)
trailing 50 to 49 significand
bits of n with guard, round, and
sticky

leading 14 to 15 significand
bits of n

double first    –73 ≤logbn (n) ≤ 180
   (see Figure 62)

leading 53 significand bits of n trailing 11 significand bits of
n with guard, round, and
sticky

scaled sum    logbn (n) ≥ 128 or
   logbn (n) ≤ –128

Use test bits of float  component to hold the 8 high order bits
of n’s exponent.  Use remaining bits of float  and double
components to hold significand bits of n with an exponent
equal to the 7 low order bits of n’s exponent.
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Figure 60 — Valid exponent ranges for different indigenous  constant pool entry encodings.
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float  significand 0x00

double  significand
+

indigenous  significand

Figure 61 — float  component holding the leading significand bits of an indigenous  literal.

double  significand

+ float  significand 0x00

indigenous  significand

Figure 62 — double  component holding the leading significand bits of an indigenous  literal.

Figure 61 and Figure 62 could imply that for a given encoding there is a fixed difference in the exponents of
the float  and double  components.  The difference in exponents would be equal to the number of significand bits
used for encoding the target significand in the leading component.  However, that difference is only a lower bound
on the difference in exponents.  Since both leading and trailing components are normalized floating point numbers, if
a component is non-zero, the most significant bit in that component must be one.  But, the first bit position after the
significand bit in the leading component may be zero.  Therefore, due to zeros in some bit positions, the trailing
component may have a smaller exponent than implied by the number of significand bits stored in the leading
component.

The fourth scaled sum encoding is more elaborate than the float  first or double  first encoding.  The
scaled sum encoding can handle all double extended  values that have exponents larger than 127 in magnitude,
including double extended  subnormals.  Essentially, the scaled sum encoding splits the number’s exponent into
two parts; the high order bits of the exponent are stored in the test bits of the float  component and the low order
bits of the exponent are stored in the exponent of the float  component.  If the test bits are zeroed out, the float
and double  components form a number in the float  first encoding; a number with the same significand as the
intended value but with a different exponent.  The exponent value of this float  first number is equal to

((int)abs(logbn( n)) mod 128) * sign(logbn( n))

where n is the value of the number being encoded.  After adding/subtracting out the float  first exponent, the
remaining value of the original exponent is a multiple of 128 that can be stored in an 8 bit unsigned value, such as
the test bits (the eventual sign of the test bit portion of the exponent is the same as the sign of the exponent in the
float  first component).  Using scalb  on the float  first value, the unaccounted for portion of the encoded
value’s exponent can be incorporated into the final value, as shown in Figure 58.

Not all possible combinations of float  and double  numbers are valid encodings of indigenous
literals.  In particular, no set of test bits with a value greater than 128 is legal.  Catching such malformed constant
pool entries is part of Borneo class  file verification.  As shown in Figure 60, the three full precision encoding
schemes have overlapping ranges; for exponents between -73 and 127 either float  first or double  first can be
used, for exponents between 128 and 180 either double  first or scaled sum can be used.  Using double  first
instead of float  first has no performance impact, but using double  first instead of scaled sum results in faster
conversions.
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7.2. Rounding Modes

Table 30 — New opcodes supporting IEEE 754 rounding modes.

Operation Opcode Mnemonic Stack
Get current rounding mode getrnd …, ⇒

…,result
Set rounding mode setrnd …,value ⇒

…

IEEE 754 dynamic rounding modes are supported in BVM.  The instruction getrnd returns the rounding mode under
which the current thread is running.  The value returned is encoded according to the mapping in Table 31.  The same
values are used to set the rounding mode with the setrnd instruction.  If an invalid rounding mode is given, an
UnknownRoundingModeException  is thrown.  While Borneo requires that rounding  declarations be
lexically scoped, the BVM access to rounding modes is unstructured.  Therefore, BVM verification does not check
to see that rounding mode accesses are lexically scoped or that rounding modes are restored on method call and exit.

Table 31 —BVM encodings of rounding modes.

Integer Code Rounding Mode
0 toward zero
1 to nearest (default)
2 toward positive infinity
3 toward negative infinity

7.3. Quiet Floating Point Comparisons

Table 32 — New opcodes supporting comparisons that do not signal invalid on a NaN input.

Operation Opcode Mnemonic Stack
Quiet compare double dcmplq, dcmpgq …,value1.word1,value1.word2,

value2.word1,value2.word2 ⇒
…,result

Quiet compare float fcmplq, fcmpgq …,value1,value2 ⇒
…,result

Quiet compare indigenous ncmplq, ncmplq …,value1.words,value2 .words⇒
…,result

BVM defines the existing floating point comparison instructions in JVM to signal invalid if given a NaN operand
(the JVM specification does not include the IEEE flags or traps).  The quiet floating point comparison operators
have the same behavior as the normal floating point comparison operators, except that the invalid is not signaled if
any of the arguments is a NaN.

To see if two floating point numbers are unordered, a cmpgq can be done followed by a cmplq on the same
operands.  Since the g and l compare instructions only differ in their treatment of NaN’s, the results of cmpgq and
cmplq on the same input differ only if the numbers are unordered.  Quiet comparisons are recommended in the IEEE
754 standard.

Comparing floating point numbers for equality (==) is likely to be rarer than other comparisons.  Therefore,
the current JVM comparison instructions are redefined to signal invalid when given a NaN input.  This way more
Java programs already compiled into JVM conform to Borneo (and IEEE 754) semantics.  Borneo would compile
floating point == and !=  tests using the new quiet BVM comparison instructions.
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7.4. Exception Handling and Traps

Table 33 — New opcodes supporting sticky flags and floating point exceptions.

Operation Opcode Mnemonic Stack
Get current exception trap mask gettrapmask …, ⇒

…,value
Set current exception trap mask settrapmask …,value ⇒

…
Get current sticky flags settings getsticky …, ⇒

…,value
Set current sticky flags settings setsticky …,value ⇒

…

settrapmask and setsticky pop the top word off of the stack and use it to set the exception trap mask and sticky flags,
respectively.  Conversely, gettrapmask and getsticky fetch the trap mask and sticky flags and push the value onto the
top word of the stack.  All four instructions use the same operand/result format, which is listed in Figure 63.

INV Invalid
OVF Overflow
UDF Underflow
DBZ Divide-by-Zero
INX Inexact

n 5 4 3 2 1 0
INV OVF UDF DBZ INX

Figure 63 — Encodings for trapping status

settrapmask and setsticky ignore all but bits 4-0 of the operand when loading the trap mask or sticky flags.
gettrapmask and getsticky return a word zeroed out except possibly for the lowest five bits.

The sticky flag signature of a method is encoded by two new method attributes, AdmitsSignature  and
YieldsSignature  (Figure 64).  The new attributes use the flag_signature  field to encode what flags are
admitted/yielded using the bit representation in Figure 63.  JVM implementations are required to ignore novel
attributes not defined in the JVM specification ([66] §4.7) so these new attributes should not affect existing JVM
environments.

AdmitsSignature_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 flag_signature;

}

YieldsSignature_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 flag_signature;

}

Figure 64 — New attributes to record flag signatures.

For now, BVM does not require verification that a method has the claimed sticky flag signature, but that
requirement may be added in the future.  However, the verification process does check that an overriding method has
the same declared flag signature as the overridden method.  In the absence of flag attributes, the default flag
signature is admits all yields all .  A Borneo compiler should add Exceptions  attribute entries ([66]
§4.7.5) for any floating point exceptions that may be thrown due to enabling trapping mode.  The current JVM
specification does not verify throws  clauses of methods.  If an instruction throws a floating point exception, the
corresponding sticky flag is not set.  Table 34 lists what floating point exceptions BVM instructions can throw;
different causes of invalid exceptions are distinguished, as in Table 7.
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Table 34 —New exceptional conditions possibly generated by arithmetic bytecodes.

Exceptional Conditions
Operation Opcodes INV OVF UDF DBZ INX

Floating point add, subtract fadd fsub dadd
dsub nadd nsub

X X X X

Floating point multiply fmul dmul nmul X X X X
Floating point divide fdiv ddiv ndiv X X X X X
Float point remainder50 frem drem nrem X
Floating point compare fcmpl fcmpg

dcmpl dcmpg
ncmpl ncmpg

X

fcmplq fcmpgq
dcmplq dcmpgq
ncmplq ncmpgq

Convert floating point to integer f2i f2l
d2i d2l
n2i n2l

X X

Convert integer to floating point i2f i2d i2n
l2f l2d l2n

X X

Convert between floating point types n2f n2d d2f X X X
f2d f2n d2n

Load indigenous  from constant pool51 ldc_nw X X X

7.5. Threads
No bytecode changes are required to support threads.  However, the JVM implementation must be modified so that
the rounding mode, exception mask, and sticky flags are maintained as part of the thread state.  When a thread
context switch takes place, these three values must be saved with the outgoing thread, and the values associated with
the incoming thread must be installed.  New threads are started with the sticky flags cleared, rounding set to round to
nearest, and trapping status set to non-trapping mode.

7.6. Overall
The JVM specification states that the JVM may rearrange bytecode instructions in order to improve performance as
long as the reordering preserves reproducibility.  In general, the BVM system may not move floating point
instructions from one side of a setrnd, settrapmask, setsticky, or getsticky instruction to the other, since doing so
could change the program’s behavior. Such reorderings are valid if it can be determined that the given instruction
movement could not change the program’s behavior.  For example, a comparison can be moved across a setrnd since
the rounding mode does not effect the result of a comparison.  If only the divide by zero flag is being tested, addition
and multiplication instructions can be moved around a getsticky instruction since the add and multiply instructions
cannot set the divide by zero flag.

The functionality of setrnd, getrnd, settrapmask, gettrapmask, setsticky, and getsticky must be known to
BVM to support this kind of analysis and optimization.  For example, currently one can set the rounding mode by
calling a native  method to access the hardware’s floating point control registers directly.  However, the JVM
would not be aware that the native  method did this.  The JVM could be made aware that the method of a
particular class changes the rounding mode; alternatively, BVM adds new instructions to implement this
functionality.

                                                          
50 The JVM floating point remainder instructions do not implement the IEEE 754 remainder operation.
51 When loading an indigenous  value from the constant pool, overflow and underflow can only be signaled if
indigenous  is implemented with the double  format.
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Table 35 — Instruction counts in current JVM

Type of Opcode Number
regular instructions 201
reserved opcodes 3
totally uncommitted opcodes 25
quick instructions 27
Total 256

Table 36 — Instruction counts for new Borneo opcodes.

Purpose of Opcode Number
indigenous  versions of existing instructions 25
rounding mode manipulation 2
quiet comparisons (includes 1 for indigenous ) 3
flag and traps manipulation 4
Total 34

As shown in Table 35, most of the opcodes in the JVM bytecode are already assigned to designate either a
real instruction or a _quick instruction variant.  In Sun’s implementation of the JVM interpreter, the bytecode
sequence of a program can be dynamically rewritten at runtime with _quick pseudo-instruction variants ([66] §9).
Instructions that reference the constant pool often need to perform some checking in addition to the actual execution
of the instruction.  When such instructions are first executed, the needed checking can be performed.  If the checking
is successful the instruction can then be replaced with a _quick pseudo-instruction variant that does not perform the
checking on subsequent executions.  The _quick pseudo-instructions are not part of the JVM specification; they are
only an optimization used in Sun’s JVM implementation.  The opcodes currently used for _quick pseudo-instructions
could be used to encode some of the new BVM instructions.

Unfortunately, Borneo proposes to add 34 new instructions (Table 36) while JVM only has 25 possible
opcodes totally uncommitted.  However, the additional nine instructions can be accommodated in various ways.  The
simplest way to add all the new opcodes is to designate one opcode as an escape for a two byte instruction.  For
example, the rounding mode, quiet comparison, and exception handling instructions could be placed within the
existing opcode space while the indigenous  instructions could be prefixed by an escape sequence.  A second
option is to use the _quick instruction opcodes.  The _quick instruction opcodes and the uncommitted opcodes
together can easily encode the Borneo extensions while keeping all instructions one byte.  A third, more radical
option is to reclaim existing JVM opcodes.  As detailed in Appendix 9.2, nearly one quarter of the existing JVM
instructions are dedicated to peephole optimized versions of more general instructions.  Eliminating these redundant
opcodes alone would free up enough opcode space to encode all the Borneo extensions.  Since the redundant
opcodes are exactly expressible in terms of their more general counterparts, a simple class  file to class  file
transformer can be written to purge all uses of the redundant opcodes from existing class files.  Since BVM class
files have a different magic number52 than JVM class  files, an interpreter could dynamically recognize whether or
not the redundant opcodes can be used in a given class  file.

                                                          
52 The magic number is the first four bytes of the class file which identifies its format.  While Java is a
ØxCAFEBABE, Borneo is a ØxCAFEDØØD.
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8. Changes to the Package java.lang
The structure and wording of this portion of the Borneo specification is strongly modeled after JLS chapter 20.
Specifications are not given for the new numeric classes discussed in section 6.4, only for changes to existing classes
in the package java.lang  and for the new Indigenous  class.

8.1. Changes to java.lang.Class

8.1.1. public String getName ()

The behavior of this method is the same as in Java except that an element type name encoding is added to represent
the new basic type indigenous :
N indigenous

8.1.2. public Class getSuperclass ()

The behavior of this method is the same as in Java except that null  is returned for value  classes.

8.2. Changes to java.lang.Number

8.2.1. public abstract indigenous indigenousValue ()

The general contract of the indigenousValue  method is that it returns the numeric value represented by this
Number object after converting it to type indigenous .

Overridden by Integer , Long , Float , Double , and Indigenous .

8.3. Changes to java.lang.Integer

8.3.1. public indigenous indigenousValue ()

The int  value represented by this Integer  object is converted to type indigenous  and the result of the
conversion is returned.

Overrides the indigenousValue  method of Number.

8.4. Changes to java.lang.Long

8.4.1. public indigenous indigenousValue ()

The long  value represented by this Long  object is converted to type indigenous  and the result of the
conversion is returned.

Overrides the indigenousValue  method of Number.

8.5. Changes to java.lang.Float

8.5.1. public static final float MIN_VALUE = 1.4e-45f;

The constant value of this field is the smallest positive nonzero value of type float .  It is equal to the value
returned by Math.nextAfter(0.0f, infinityF) .

8.5.2. public static final float MIN_NORMAL = 1.17549435e-38f;

The constant value of this field is the smallest positive normalized value of type float .  It is equal to the value
returned by Math.nextAfter(0.0f, infinityF)/(Math.nextAfter(1.0f, infinityF)-
1.0f) .
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8.5.3. public static final float MAX_VALUE = 3.4028235e+38f;

The constant value of this field is the largest positive finite value of type float .  It is equal to the value returned by
Math.nextAfter(infinityF, 0.0f) .

8.5.4. public static final float NEGATIVE_INFINITY  = -infinityF;

The constant value of this field is the negative infinity of type float .

8.5.5. public static final float POSITIVE_INFINITY  = infinityF;

The constant value of this field is the positive infinity of type float .

8.5.6. public static final float NaN = NaNf;

The constant value of this field is the Not-a-Number value of type float .

8.5.7. public static final float ROUNDING_THRESHOLD = 5.960465e-8f;

The constant value of this field is the smallest positive float  value such that under the round to nearest rounding
mode 1.0f  plus this value is not equal to 1.0f .  It is equal to the value returned by
Math.nextAfter((Math.nextAfter(1.0f, infinityF)-1.0f)/2.0f, infinityF) .

8.5.8. public static final int SIGNIFICAND_WIDTH = 24;

The constant value of this field is the number of bits in the significand of a value of type float , including the
implicit bit.  It is equal to the value returned by –(int)Math.logb(Math.nextAfter(1.0f,
infinityF) -1.0f)+ 1 .

8.5.9. public static final int MIN_EXPONENT = -126;

The constant value of this field is the smallest exponent of a normalized value of type float .  It is equal to the
value returned by (int)Math.logb(Float.MIN_NORMAL) .

8.5.10. public static final int MAX_EXPONENT = 127;

The constant value of this field is the largest exponent of a normalized value of type float .  It is equal to the value
returned by (int)Math.logb(Math.nextAfter(infinityF, 0.0f)) .

8.5.11. public static final int BIAS_ADJUST = 192;

The constant value of this field is the absolute value of the amount by which the exponent is adjusted when a value of
type float  overflows or underflows when trapping on those conditions is enabled.  It is equal to the value returned
by (int)(3.0f * Math.scalb(2.0f,

 (int)(Math.ceil(Math.log( 
Math.logb(Float.MAX_VALUE))/

Math.log(Math.E))-2) )) .

8.5.12. public Float (indigenous value)

This constructor initializes a newly created Float  object so that it represents the result of narrowing the argument
from type indigenous  to type float .

8.5.13. public indigenous indigenousValue ()

The float  value represented by this Float  object is converted to type indigenous  and the result of the
conversion is returned.

Overrides the indigenousValue  method of Number.
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8.5.14. public static String toString (double d, int rm)
throwns UnknownRoundingModeException

This method has the same requirements as the toString  of one argument method except that the decimal string is
rounded under the rounding mode represented by rm.  If rm does not specify a valid rounding mode, an
UnknownRoundingModeException  is thrown.

8.5.15. public static float valueOf (String s, int rm)
throws NullPointerException, NumberFormatException,
UnknownRoundingModeException

The string s  is interpreted as the representation of a floating point value and a Double  object representing that
value is created and returned.

If s  is null , then a NullPointerException  is thrown.
Leading and trailing whitespace characters in s  are ignored.  To be interpreted as a number, the rest of s

must have the same lexical structure as a Borneo floating point literal.  If s  does not have that structure, a
NumberFormatException  is thrown.  The value of the returned Float  object is the decimal floating point
value of s  correctly rounded and converted to float  using the rounding mode specified by rm.  If rm does not
specify a valid rounding mode, an UnknownRoundingModeException  is thrown.

8.6. Changes to java.lang.Double

8.6.1. public static final double MIN_VALUE = 4.94065645841246544e-324;

The constant value of this field is the smallest positive nonzero value of type double .  It is equal to the value
returned by Math.nextAfter(0.0, infinity) .

8.6.2. public static final double MIN_NORMAL = 2.2250738585072014E-308;

The constant value of this field is the smallest positive normalized value of type double .  It is equal to the value
returned by Math.nextAfter(0.0, infinity)/(Math.nextAfter(1.0, infinity)-1.0) .

8.6.3. public static final double  MAX_VALUE = 1.79769313486231570E+308;

The constant value of this field is the largest positive finite value of type double .  It is equal to the value returned
by Math.nextAfter(infinity, 0.0) .

8.6.4. public static final double  NEGATIVE_INFINITY  = -infinity;

The constant value of this field is the negative infinity of type double .

8.6.5. public static final double  POSITIVE_INFINITY  = infinity;

The constant value of this field is the positive infinity of type double .

8.6.6. public static final double NaN = NaNd;

The constant value of this field is the Not-a-Number value of type double .

8.6.7. public static final double  ROUNDING_THRESHOLD =
1.1102230246251568E-16d;

The constant value of this field is the smallest positive double  value such that under the round to nearest rounding
mode 1.0  plus this value is not equal to 1.0 .  It is equal to the value returned by
Math.nextAfter((Math.nextAfter(1.0, infinity)-1.0)/2.0, infinity) .
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8.6.8. public static final int SIGNIFICAND_WIDTH = 53;

The constant value of this field is the number of bits in the significand of a value of type double , including the
implicit bit.  It is equal to the value returned by –(int)Math.logb(Math.nextAfter(1.0, infinity)
-1.0)+ 1 .

8.6.9. public static final int MIN_EXPONENT = -1022;

The constant value of this field is the smallest exponent of a normalized value of type double .  It is equal to the
value returned by (int)Math.logb(Double.MIN_NORMAL) .

8.6.10. public static final int MAX_EXPONENT = 1023;

The constant value of this field is the largest exponent of a normalized value of type double .  It is equal to the
value returned by (int)Math.logb(Math.nextAfter(infinity, 0.0)) .

8.6.11. public static final int BIAS_ADJUST = 1536;

The constant value of this field is the absolute value of the amount by which the exponent is adjusted when a value of
type double  overflows or underflows when trapping on those conditions is enabled.  It is equal to the value
returned by(int)(3.0 * Math.scalb(2.0,

(int)(Math.ceil(Math.log( 
Math.logb(Double.MAX_VALUE))/
Math.log(Math.E))-2) )) .

8.6.12. public Double (indigenous value)

This constructor initializes a newly created Double  object so that it represents the result of narrowing the argument
from type indigenous  to type double .

8.6.13. public indigenous indigenousValue ()

The double  value represented by this Double  object is converted to type indigenous  and the result of the
conversion is returned.

Overrides the indigenousValue  method of Number.

8.6.14. public static String toString (double d, int rm) throwns
UnknownRoundingModeException

This method has the same requirements as the toString  of one argument method except that the decimal string is
rounded under the rounding mode represented by rm.  If rm does not specify a valid rounding mode, an
UnknownRoundingModeException  is thrown.

8.6.15. public static double valueOf (String s, int rm)
throws NullPointerException, NumberFormatException,
UnknownRoundingModeException

The string s  is interpreted as the representation of a floating point value and a Double  object representing that
value is created and returned.

If s  is null , then a NullPointerException  is thrown.
Leading and trailing whitespace characters in s  are ignored.  To be interpreted as a number, the rest of s

must have the same lexical structure as a Borneo floating point literal.  If s  does not have that structure, a
NumberFormatException  is thrown.  The value of the returned Double  object is the decimal floating point
value of s  correctly rounded and converted to double  using the rounding mode specified by rm.  If rm does not
specify a valid rounding mode, an UnknownRoundingModeException  is thrown.
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8.7. The Class java.lang.Indigenous

Where indigenous  is implemented as double , corresponding fields in java.lang.Indigenous  and
java.lang.Double  have the same value.  The behavior of corresponding methods is also analogous.

public final class Indigenous  extends Number {
public static final indigenous MIN_VALUE =

Math.nextAfter(0.0n, infinityN);
public static final indigenous MIN_NORMAL =

Math.nextAfter(0.0n, infinityN)/
(Math.nextAfter(1.0n, infinityN)-1.0n);

public static final indigenous MAX_VALUE =
Math.nextAfter(infinityN, 0.0n);

public static final indigenous NEGATIVE_INFINITY  = -infinityN;
public static final indigenous POSITIVE_INFINITY  = infinityN;
public static final indigenous NaN = NaNN;
public static final indigenous ROUNDING_THRESHOLD =

Math.nextAfter((Math.nextAfter(1.0n, infinityN)-1.0n)/
2.0n, infinityN);

public static final int SIGNIFICAND_WIDTH =
–(int)Math.logb(nextAfter(1.0n, infinityN) -1.0n)+ 1;

public static final int MIN_EXPONENT =
(int)Math.logb(Indigenous.MIN_NORMAL)

public static final int MAX_EXPONENT =
(int)Math.logb(Math.nextAfter(infinityN, 0.0n))

public static final int BIAS_ADJUST =
(int)(3.0n * Math.scalb(2.0n,

(int)(Math.ceil(Math.log( 
Math.logb(Indigenous.MAX_VALUE))/
Math.log(Math.E))-2) ))

public Indigenous (indigenous value);
public Indigenous (String s);

throws NumberFormatException;
public String toString ();
public boolean equals (Object obj);
public int hashCode ();
public int intValue ();
public int longValue ();
public int floatValue ();
public int doubleValue ();
public int indigenousValue ();
public static String toString (indigenous n);
public static String toString (indigenous n, int rm)

throwns UnknownRoundingModeException
public static Indigenous valueOf (String s)

throws NullPointerException, NumberFormatException;
public static Indigenous valueOf (String s, int rm)

throws NullPointerException, NumberFormatException,
 UnknownRoundingModeException;

public boolean isNaN ();
public static boolean isNaN (indigenous n);
public boolean isInfinite ();
public static boolean isInfinite (indigenous n);
public static double[] decompose (indigenous n);
public static indigenous compose (double d, float f)

throws NumberFormatException
admits none yields inexact, overflow, underflow;

}
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8.7.1. public static final indigenous MIN_VALUE =  Math.nextAfter(0.0n,
infinityN);

The value of this field is the smallest positive nonzero value of type indigenous .

8.7.2. public static final indigenous MIN_NORMAL = Math.nextAfter(0.0n,
infinityN)/(Math.nextAfter(1.0n, infinityN)-1.0n);

The value of this field is the smallest positive normalized value of type indigenous .

8.7.3. public static final indigenous MAX_VALUE =
Math.nextAfter(infinityN, 0.0n);

The value of this field is the largest positive finite value of type indigenous .

8.7.4. public static final indigenous  NEGATIVE_INFINITY  = -infinityN;

The value of this field is the negative infinity of type indigenous .

8.7.5. public static final indigenous  POSITIVE_INFINITY  = infinityN;

The value of this field is the positive infinity of type indigenous .

8.7.6. public static final indigenous  NaN  = NaNN;

The value of this field is the Not-a-Number of type indigenous .

8.7.7. public static final indigenous ROUNDING_THRESHOLD =
Math.nextAfter((Math.nextAfter(1.0n, infinityN)-1.0n)/ 2.0n,
infinityN);

The value of this field is the smallest positive indigenous  value such that under the round to nearest rounding
mode 1.0n  plus this value is not equal to 1.0n .

8.7.8. public static final int SIGNIFICAND_WIDTH =
-(int)Math.logb(nextAfter(1.0n, infinityN) -1.0n)+ 1;

The value of this field is the number of bits in the significand of a value of type indigenous , including an implicit
bit, if present.

8.7.9. public static final int MIN_EXPONENT =
(int)Math.logb(Indigenous.MIN_NORMAL);

The value of this field is the smallest exponent of a normalized value of type indigenous .

8.7.10. public static final int MAX_EXPONENT =
(int)Math.logb(Math.nextAfter(infinityN, 0.0n));

The value of this field is the largest exponent of a normalized value of type indigenous .

8.7.11. public static final int BIAS_ADJUST = (int)(3.0n *
Math.scalb(2.0n,(int)(Math.ceil(Math.log( Math.logb(
Indigenous.MAX_VALUE))/ Math.log(Math.E))-2) ));

The value of this field is the absolute value of the amount by which the exponent is adjusted when a value of type
indigenous  overflows or underflows when trapping on those conditions is enabled.

8.7.12. public Indigenous (indigenous value)

This constructor initializes a newly created Indigenous  object so that it represents the primitive value that is the
argument.
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8.7.13. public Indigenous (String s)
throws NumberFormatException

This constructor initializes a newly created Indigenous  object so that it represents the floating point value of type
indigenous  represented by the string.  The string is converted to an indigenous  value in exactly the manner
used by the valueOf  method.

8.7.14. public String toString ()

The primitive indigenous  value represented by this Indigenous  object is converted to a string exactly as if by
the method toString  of one argument.

Overrides the toString  method of Object .

8.7.15. public boolean equals (Object obj)

The result is true  if and only if the argument is not null  and is an Indigenous  object that represents the same
bitwise indigenous  value as this Indigenous  object.  For the purposes of the equals  method, +0 and –0 are
not the same.  If the argument and this Indigenous  object both have the same NaN value, equals  will return
true.

8.7.16. public int hashCode ()

If indigenous  is implemented as double , return the same result as Double.hashCode .  Otherwise, follows
the general contract for the hashCode  method.

8.7.17. public int intValue ()

The indigenous  value represented by this Indigenous  object is converted to type int  and the result of the
conversion is returned.

Overrides the intValue  method of Number.

8.7.18. public int longValue ()

The indigenous  value represented by this Indigenous  object is converted to type long  and the result of the
conversion is returned.

Overrides the longValue  method of Number.

8.7.19. public int floatValue ()

The indigenous  value represented by this Indigenous  object is converted to type float  and the result of the
conversion is returned.

Overrides the floatValue  method of Number.

8.7.20. public int doubleValue ()

The indigenous  value represented by this Indigenous  object is converted to type double  and the result of
the conversion is returned.

Overrides the doubleValue  method of Number.

8.7.21. public indigenous indigenousValue ()

The indigenous  value represented by this Indigenous  object is returned.
Overrides the indigenousValue  method of Number.

8.7.22. public static String toString (indigenous n)

On platforms where indigenous  is implemented as double , this method returns the same string as
Double.toString((double) n) .  On platforms where indigenous  is double extended , this method
has the same specification as Double.toString  except that the number of decimal digits printed out is the least
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number of decimal digits necessary to uniquely distinguish the argument value from adjacent double extended
values (at least one digit is needed for the fractional part of the number).

8.7.23. public static String toString (indigenous n, int rm)
throwns UnknownRoundingModeException

This method has the same requirements as the toString  of one argument method except that the decimal string is
rounded under the rounding mode represented by rm.  If rm does not specify a valid rounding mode, an
UnknownRoundingModeException  is thrown.

8.7.24. public static Indigenous valueOf (String s)
throws NullPointerException, NumberFormatException

The string s  is interpreted as the representation of a floating point value and an Indigenous  object representing
that value is created and returned.

If s  is null , then a NullPointerException  is thrown.
Leading and trailing whitespace characters in s  are ignored.  To be interpreted as a number, the rest of s

must have the same lexical structure as a Borneo floating point literal.  If s  does not have that structure, a
NumberFormatException  is thrown.  The value of the returned Indigenous  object is the decimal floating
point value of s  correctly rounded and converted to indigenous  using round to nearest.

8.7.25. public static Indigenous valueOf (String s, int rm)
throws NullPointerException, NumberFormatException,
UnknownRoundingModeException

The string s  is interpreted as the representation of a floating point value and an Indigenous  object representing
that value is created and returned.

If s  is null , then a NullPointerException  is thrown.
Leading and trailing whitespace characters in s  are ignored.  To be interpreted as a number, the rest of s

must have the same lexical structure as a Borneo floating point literal.  If s  does not have that structure, a
NumberFormatException  is thrown.  The value of the returned Indigenous  object is the decimal floating
point value of s  correctly rounded and converted to indigenous  using the rounding mode specified by rm.  If rm
does not specify a valid rounding mode, an UnknownRoundingModeException  is thrown.

8.7.26. public boolean isNaN ()

The result is true  if and only if the value represented by this Indigenous  object is NaN.

8.7.27. public static boolean isNaN (indigenous n)

The result is true  if and only if the value of the argument is NaN.

8.7.28. public boolean isInfinite ()

The result is true  if and only if the value represented by this Indigenous  object is positive or negative infinity.

8.7.29. public static boolean isInfinite (indigenous n)

The result is true  if and only if the value of the argument is positive or negative infinity.

8.7.30. public static double[] decompose (indigenous n) admits none yields
none

Takes the indigenous  argument and returns an array of values suitable for creating indigenous  constant pool
entries using the encodings defined in section 7.1.2.  The first element of the returned array is the double
component, the second element is a float  value widened to double .  If a number can be represented by more
than one encoding (see section 7.1.2), double  only is used if possible, float  first takes precedence over double
first, and double  first takes precedence over scaled sum.
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8.7.31. public static indigenous compose (double d, float f) throws
NumberFormatException admits none yields inexact, overflow,
underflow

Takes a double  argument and a float  argument, interprets them as encoding an indigenous  literal as
described in section 7.1.2, and returns the appropriate indigenous  value.  If the double  and float  values do
not comprise a valid encoding, a NumberFormatException  is thrown.  The inexact flag is raised if the floating
point value is not exactly representable as an indigenous  value.  The overflow and underflow flags are raised
appropriately if the floating point value is too large or too small to be represented as an indigenous  value on the
current platform.

8.8. Changes to java.lang.Math

Borneo adds transcendental functions acting on indigenous  values to the Math  class.  However, since Java
currently specifies those functions acting on double  values in terms of fdlibm  algorithms, Borneo provides no
detailed specification of those functions acting on indigenous  values.  Providing necessary and sufficient
conditions for transcendental functions is left as future work.

The getRound  and setRound  methods represent rounding modes as indicated by the TO_NEAREST,
TO_ZERO, TO_POSITIVE_INFINITY , and TO_NEGATIVE_INFINITY  static final  fields.  The four
rounding modes occur in the range [0, 3].  The four rounding modes should be represented as an enumerated type,
but Java does not directly support enumerated types.

The getFlags , setFlags , and setFlag  methods manipulate the sticky flag state using an integer
representation of the sticky flags.  Each of the low order five bits an integer represents a different condition, as given
by the *_FLAG fields.  The setFlag  and setFlags  methods ignore all other bits; the getFlag  method always
returns 0 in bits 31-5.

Since Borneo has many features intended for robust numerical programs, the Borneo implementation of the
IEEE recommended functions should be robust as well.  Although not strictly required by the language semantics, it
is suggested that the IEEE recommended functions work properly even under “malicious” dynamic rounding mode
and trapping status settings.  Additionally, for many of the recommended functions, if a NaN is given as input, a NaN
must be returned.  Borneo suggests the same NaN be returned.

The family of fpClass  methods return the kind of floating point number given to them (infinite, normal,
subnormal, etc.).  This information is encoding as indicated by the FP_*  fields.

The Borneo Math  library does not include any methods to query or set the trapping status.  Borneo
language semantics have trapping status as a static property.  Having a method to explicitly set the trapping status
could foil the compiler’s analysis of a program; therefore, no such method is provided.

To support the new operators, Borneo makes the Math  class a value  class.

8.8.1. Exponentiation operators
Borneo has an exponentiation operation for each primitive floating point type.  The operator is named “** ” as in
FORTRAN.  The exponentiation operators have the same behavior as the pow method on the same type of
argument.

public static float op**(float base, float power)
public static double op**(double base, double power)
public static indigenous op**(indigenous base, indigenous power)

8.8.2. Directed Rounding operators
Sixteen directed rounding operators are provided for each primitive floating point type.  There is one directed
rounding operator for each combination of type, rounding mode, and operator affected by rounding mode.  The
directed rounding operators have the same flag behavior as the corresponding built-in Java operator.  The signatures
of the rounding mode operators are of the form

public static τ opαβ( τ a, τ b)

where τ ∈ { float , double , indigenous }, α ∈ {+, –, * , / }, and β ∈ {@, ̂ , _, %}.  The elements of the set {@,
^ , _, %} indicate respectively round to zero, round toward +∞, round toward –∞, and round to nearest.
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8.8.3. Quiet Comparison operators
Borneo adds four new quiet comparison operators for each primitive floating point type.  The quiet comparison
operators do not set the invalid flag when given a NaN argument and return true  for the unordered relation.  The
quiet comparison operators have signatures of the form

public static boolean op γ?( τ a, τ b)

where τ ∈ { float , double , indigenous } and γ ∈ {<, <=, >, >=}.

8.8.4. public static final int TO_NEAREST = 0;

The constant value of this field represents round to nearest for rounding  expressions and the getRound  and
setRound  methods.

8.8.5. public static final int TO_ZERO = 1;

The constant value of this field represents round to zero for rounding  expressions and the getRound  and
setRound  methods.

8.8.6. public static final int TO_POSITIVE_INFINITY  = 2;

The constant value of this field represents round to positive infinity for rounding  expressions and the getRound
and setRound  methods.

8.8.7. public static final int TO_NEGATIVE_INFINITY  = 3;

The constant value of this field represents round to negative infinity for rounding  expressions and the getRound
and setRound  methods.

8.8.8. public static int getRound ()

Returns the current dynamic rounding mode encoded using TO_NEAREST, TO_ZERO,
TO_NEGATIVE_INFINITY , and TO_POSITIVE_INFINITY .

8.8.9. public static void setRound (int rm) throws
UnknownRoundingModeException

Sets the dynamic rounding mode according to the value of the arguement.  If the argument is not equal to
TO_NEAREST, TO_ZERO, TO_NEGATIVE_INFINITY , nor TO_POSITIVE_INFINITY , an
UnknownRoundingModeException  is thrown.

8.8.10. public static final int NONE = 0x0;

The constant value of this field represents the empty set of flags for the various sticky flag manipulation methods.

8.8.11. public static final int INEXACT_FLAG = 0x1;

The constant value of this field represents the inexact flag for the various sticky flag manipulation methods.

8.8.12. public static final int DIVIDEbyZERO_FLAG = 0x2;

The constant value of this field represents the divide by zero flag for the various sticky flag manipulation methods.

8.8.13. public static final int UNDERFLOW_FLAG = 0x4;

The constant value of this field represents the underflow flag for the various sticky flag manipulation methods.

8.8.14. public static final int OVERFLOW_FLAG = 0x8;

The constant value of this field represents the overflow flag for the various sticky flag manipulation methods.
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8.8.15. public static final int INVALID_FLAG  = 0x10;

The constant value of this field represents the invalid flag for the various sticky flag manipulation methods.

8.8.16. public static final int ALL = 0x1F;

The constant value of this field represents the entire set of flags for the various sticky flag manipulation methods.

8.8.17. public static void setFlag (int flags, boolean value)

The sticky flags indicated by the flags  argument are set to the value of the value  argument; false  meaning 0 or
clear and true  meaning 1 or set.

8.8.18. public static void setFlags (int flagState)

The current sticky flag state is replaced by the state represented by the flagState  argument.

8.8.19. public static int getFlags ()

Returns the current sticky flag state is as represented as an integer.

8.8.20. public static indigenous E()

This method returns the indigenous  value closer than any other to e, the base of the natural logarithms.  On a
platform where indigenous  is implemented with the double  format, the result of the method E is equal to the
double  class variable Math.E .

8.8.21. public static indigenous PI ()

This method returns the indigenous  value closer than any other to π, the ratio of the circumference of a circle to
its diameter.  On a platform where indigenous  is implemented with the double  format, the result of the method
PI  is equal to the double  class variable Math.PI .

8.8.22. Transcendental functions
public static indigenous sin (indigenous n)
public static indigenous cos (indigenous n)
public static indigenous tan (indigenous n)
public static indigenous asin (indigenous n)
public static indigenous acos (indigenous n)
public static indigenous atan (indigenous n)
public static indigenous atan2 (indigenous n)
public static indigenous exp (indigenous n)
public static indigenous log (indigenous n)
public static indigenous pow(indigenous a, indigenous b)

8.8.23. public static indigenous sqrt (indigenous n)

This method computes an approximation to the square root of the argument.
Special cases:

• If the argument is NaN or less than zero, then the result is NaN
• If the argument is positive infinity, than the result is positive infinity.
• If the argument is positive zero or negative zero, then the result is the same as the argument.
Otherwise, the result is the indigenous  value closest to the true mathematical square root.

8.8.24. public static indigenous IEEEremainder (indigenous x, indigenous
y) admits none yields invalid

This method computes the remainder operation on two arguments as prescribed by the IEEE 754 standard:  the
remainder value is mathematically equal to x – y × n where n is the mathematical integer closet to the exact
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mathematical value of the quotient x / y; if two mathematical integers are equally close to x / y then n is the integer
that is even.  If the remainder is zero, its sign is the same as the sign of the first argument.

Special cases:
• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero or negative

zero, then the result is NaN and invalid is signaled.
• If the first argument is finite and the second argument is infinite, then the result is the same as the first argument.

8.8.25. public static indigenous ceil (indigenous n)

The result is the smallest (closest to negative infinity) indigenous  value that is not less than the argument and is
equal to a mathematical integer.

Special cases:
• If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
• If the argument is NaN or an infinity or positive or negative zero, then the result is the same as the argument.
• If the argument is less than zero but greater than -1.0 , then the result is negative zero.

8.8.26. public static indigenous floor (indigenous n)

The result is the largest (closest to positive infinity) indigenous  value that is not greater than the argument and is
equal to a mathematical integer.

Special cases:
• If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
• If the argument is NaN or an infinity or positive or negative zero, then the result is the same as the argument.

8.8.27. public static indigenous rint (indigenous n)

The result is the indigenous  value that is closest in value to the argument and is equal to a mathematical integer.
If two indigenous  values that are mathematical integers are equally close to the value of the argument, the result
is the integer value that is even.

Special cases:
• If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
• If the argument is NaN or an infinity or positive or negative zero, then the result is the same as the argument.

8.8.28. public static long round (indigenous n)

The result is rounded to an integer by adding 1/2, taking the floor of the result, and casting the result to type long .
In other words, the result is equal to the value of the expression:
(long) Math.floor(n + 0.5n)
Special cases:

• If the argument is NaN, the result is 0.
• If the argument is negative infinity, or indeed any value less than or equal to the value of Long.MIN_VALUE ,

the result is equal to the value of Long.MIN_VALUE .
• If the argument is positive infinity, or indeed any value greater than or equal to the value of

Long.MAX_VALUE, the result is equal to the value of Long.MAX_VALUE.

8.8.29. public static indigenous abs (indigenous n)

The argument is returned with its sign changed to be positive.
Special case:

• If the argument is positive zero of negative zero, the result is positive zero.
• If the argument is infinite, the result is positive infinity.
• If the argument is NaN, the result is NaN

8.8.30. public static indigenous min (indigenous a, indigenous b)

The result is the smaller of the two arguments—that is, the one closer to negative infinity.  If the arguments have the
same value, the result is that same value.
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Special cases:
• If one of the arguments is positive zero and the other is negative zero, the result is negative zero.
• If either argument is a NaN, the result is NaN.

8.8.31. public static indigenous max(indigenous a, indigenous b)

The result is the larger of the two arguments—that is, the one closer to positive infinity.  If the arguments have the
same value, the result is that same value.

Special cases:
• If one of the arguments is positive zero and the other is negative zero, the result is positive zero.
• If either argument is a NaN, the result is NaN.

8.8.32. public static float fmac (float a, float b, float c)
admits none yields overflow, underflow, inexact, invalid

The result is equal to the product of a and b calculated to infinite precision, added to c  and rounded to float .
If the final answer cannot be represented exactly the inexact flag is set.  Tininess and loss of accuracy

(defined in IEEE 754) are necessary for the underflow flag to be raised.  The overflow flag is raised when the
rounded float  result would be larger in magnitude than Float.MAX_VALUE , in which case an appropriately
signed infinity is returned.

The invalid flag is set when one of a and b is infinite and the other is zero.  If the product of a and b is
infinite and c  is an opposite signed infinity, the invalid flag is also set.  In both cases a NaN is returned.

8.8.33. public static double fmac (double a, double b, double c)
admits none yields overflow, underflow, inexact, invalid

The result is equal to the product of a and b calculated to infinite precision, added to c  and rounded to double .
If the final answer cannot be represented exactly the inexact flag is set.  Tininess and loss of accuracy

(defined in IEEE 754) are necessary for the underflow flag to be raised.  The overflow flag is raised when the
rounded double  result would be larger in magnitude than Double.MAX_VALUE , in which case an appropriately
signed infinity is returned.

The invalid flag is set when one of a and b is infinite and the other is zero.  If the product of a and b is
infinite and c  is an opposite signed infinity, the invalid flag is also set.  In both cases a NaN is returned.

8.8.34. public static indigenous fmac (indigenous a, indigenous b,
indigenous c)
admits none yields overflow, underflow, inexact, invalid

The result is equal to the product of a and b calculated to infinite precision, added to c  and rounded to
indigenous .

If the final answer cannot be represented exactly the inexact flag is set.  Tininess and loss of accuracy
(defined in IEEE 754) are necessary for the underflow flag to be raised.  The overflow flag is raised when the
rounded indigenous  result would be larger in magnitude than Indigenous.MAX_VALUE , in which case an
appropriately signed infinity is returned.

The invalid flag is set when one of a and b is infinite and the other is zero.  If the product of a and b is
infinite and c  is an opposite signed infinity, the invalid flag is also set.  In both cases a NaN is returned.

8.8.35. public static float copySign (float value, float sign)
admits none yields none

Returns the first floating point argument with the sign of the second floating point argument.  If either argument is a
NaN, NaN is returned.

8.8.36. public static double copySign (double value, double sign)
admits none yields none

Returns the first floating point argument with the sign of the second floating point argument.  If either argument is a
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NaN, NaN is returned.

8.8.37. public static indigenous copySign (indigenous value, indigenous
sign)
admits none yields none

Returns the first floating point argument with the sign of the second floating point argument.  If either argument is a
NaN, NaN is returned.

8.8.38. public static float scalb (float value, int scale_exponent)
admits none yields overflow, underflow, inexact

Return value * 2 scale_exponent .  If the exponent of the result is between the Emin and Emax for float , the answer
is calculated exactly and no signal is generated.
Special cases:
• If value  is a NaN the result is a NaN.
• If value  is an infinity, the returned value is an infinity with the same sign.
• If the exponent of the infinitely precise result is larger than Emax, infinity is returned and overflow and inexact

are signaled
• If the result is a subnormal number, inexact and underflow are signaled if tininess and loss of accuracy occur.

8.8.39. public static double scalb (double value, int scale_exponent)
admits none yields overflow, underflow, inexact

Return value * 2 scale_exponent .  If the exponent of the result is between the Emin and Emax for double , the
answer is calculated exactly and no signal is generated.
Special cases:
• If value  is a NaN the result is a NaN.
• If value  is an infinity, the returned value is an infinity with the same sign.
• If the exponent of the infinitely precise result is larger than Emax, infinity is returned and overflow and inexact

are signaled
• If the result is a subnormal number, inexact and underflow are signaled if tininess and loss of accuracy occur.

8.8.40. public static indigenous scalb (indigenous value, int
scale_exponent)
admits none yields overflow, underflow, inexact

Return value * 2 scale_exponent .  If the exponent of the result is between the Emin and Emax for indigenous , the
answer is calculated exactly and no signal is generated.
Special cases:
• If value  is a NaN the result is a NaN.
• If value  is an infinity, the returned value is an infinity with the same sign.
• If the exponent of the infinitely precise result is larger than Emax, infinity is returned and overflow and inexact

are signaled
• If the result is a subnormal number, inexact and underflow are signaled if tininess and loss of accuracy occur.

8.8.41. public static float logb754 (float value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin – 1 (in accord with IEEE  754).
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8.8.42. public static double logb754 (double value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin – 1 (in accord with IEEE  754).

8.8.43. public static indigenous logb754 (indigenous value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin – 1 (in accord with IEEE  754).

8.8.44. public static float logb (float value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin is returned (as specified in IEEE 854).  This allows subnormals to be indentified as

when scalb(x, -logb(x))  is less than 1.0 in magnitude.

8.8.45. public static double logb (double value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin is returned (as specified in IEEE 854).  This allows subnormals to be indentified as

when scalb(x, -logb(x))  is less than 1.0 in magnitude.

8.8.46. public static indigenous logb (indigenous value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the reuslt is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, Emin is returned (as specified in IEEE 854).  This allows subnormals to be indentified as

when scalb(x, -logb(x))  is less than 1.0 in magnitude.
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8.8.47. public static float logbn (float value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the result is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, returns an exponent as if the number were normalized.

8.8.48. public static double logbn (double value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the result is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, returns an exponent as if the number were normalized.

8.8.49. public static indigenous logbn (indigenous value)
admits none yields divideByZero

Returns the unbiased exponent of value .
Special cases:
• If value  is a NaN the result is a NaN
• If value  is infinite the result is +infinity.
• If value  is zero the result is –infinity and the divide by zero flag is set.
• If value  is subnormal, returns an exponent as if the number were normalized.

8.8.50. public static float nextAfter (float base, indigenous direction)
admits none yields overflow, underflow, inexact

Returns the floating point number adjacent to base  in the direction of the direction .  When the result is
subnormal, underflow and inexact are signaled.  If the result is infinity from a finite base , overflow and inexact are
signaled.  If both arguments are equal, the first argument is returned (this preserves the sign of zero appropriately).
Except possibly when base  is zero, the sign of the result is the same as the sign of base .  The direction parameter
is indigenous  so that base  can be perturbed in relation to any floating point value.

8.8.51. public static double nextAfter (double base, indigenous direction)
admits none yields overflow, underflow, inexact

Returns the floating point number adjacent to base  in the direction of the direction .  When the result is
subnormal, underflow and inexact are signaled.  If the result is infinity from a finite base , overflow and inexact are
signaled.  If both arguments are equal, the first argument is returned (this preserves the sign of zero appropriately).
Except possibly when base  is zero, the sign of the result is the same as the sign of base .  The direction parameter
is indigenous  so that base  can be perturbed in relation to any floating point value.

8.8.52. public static indigenous nextAfter (indigenous base, indigenous
direction)
admits none yields overflow, underflow, inexact

Returns the floating point number adjacent to base  in the direction of the direction .  When the result is
subnormal, underflow and inexact are signaled.  If the result is infinity from a finite base , overflow and inexact are
signaled.  If both arguments are equal, the first argument is returned (this preserves the sign of zero appropriately).
Except possibly when base  is zero, the sign of the result is the same as the sign of base .
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8.8.53. public static boolean unordered (float comparand1, float
comparand2)
admits none yields none

Returns true  if and only if the unordered relation holds between the two floating point arguments. For the
unordered relation to be true , at least one argument must be a NaN.

8.8.54. public static boolean unordered (double comparand1, double
comparand2)
admits none yields none

Returns true  if and only if the unordered relation holds between the two floating point arguments. For the
unordered relation to be true , at least one argument must be a NaN.

8.8.55. public static boolean unordered (indigenous comparand1, indigenous
comparand2)
admits none yields none

Returns true  if and only if the unordered relation holds between the two floating point arguments. For the
unordered relation to be true , at least one argument must be a NaN.

8.8.56. public static final int FP_NAN = 0;

The constant value of this field is the result of Math.fpClass  when given a NaN argument.

8.8.57. public static final int FP_NEGATIVE_INFINITY  = -4;

The constant value of this field is the result of Math.fpClass  when given an argument equal to
NEGATIVE_INFINITY  of the appropriate type.

8.8.58. public static final int FP_NEGATIVE_NORMAL = -3;

The constant value of this field is the result of Math.fpClass  when given an argument that is a negative nonzero
normalized value of the appropriate type.

8.8.59. public static final int FP_NEGATIVE_SUBNORMAL = -2;

The constant value of this field is the result of Math.fpClass  when given an argument that is a negative nonzero
subnormal value of the appropriate type.

8.8.60. public static final int FP_NEGATIVE_ZERO = -1;

The constant value of this field is the result of Math.fpClass  when given an argument that is a negative zero of
the appropriate type.

8.8.61. public static final int FP_POSITIVE_ZERO = 1;

The constant value of this field is the result of Math.fpClass  when given an argument that is a positive zero of
the appropriate type.

8.8.62. public static final int FP_POSITIVE_SUBNORMAL = 2;

The constant value of this field is the result of Math.fpClass  when given an argument that is a positive nonzero
subnormal value of the appropriate type.

8.8.63. public static final int FP_POSITIVE _NORMAL = 3;

The constant value of this field is the result of Math.fpClass  when given an argument that is a positive nonzero
normalized value of the appropriate type.
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8.8.64. public static final int FP_POSITIVE_INFINITY  = 4;

The constant value of this field is the result of Math.fpClass  when given an argument equal to
POSITIVE_INFINITY  of the appropriate type.

8.8.65. public static int fpClass (float value) admits none yields none

Returns the classification of a floating point number according to the FP_*  fields.  The sign of the returned value is
the same as the sign of the argument; 0 is returned for NaN.  The magnitude of the values returned by fpClass  for
different kinds of floating point numbers is given in Table 37.

Table 37 — Behavior of fpClass .

Kind of floating
point number

Absolute value
of result of
fpClass

infinite 4
normal 3
subnormal 2
zero 1

8.8.66. public static int fpClass (double value)
admits none yields none

Returns the classification of a floating point number according to the FP_*  fields.  The sign of the returned value is
the same as the sign of the argument; 0 is returned for NaN.  The magnitude of the values returned by fpClass  for
different kinds of floating point numbers is given in Table 37.

8.8.67. public static int fpClass (indigenous value)
admits none yields none

Returns the classification of a floating point number according to the FP_*  fields.  The sign of the returned value is
the same as the sign of the argument; 0 is returned for NaN.  The magnitude of the values returned by fpClass  for
different kinds of floating point numbers is given in Table 37.

8.9. Changes to java.lang.String

8.9.1. public static String valueOf (indigenous n)

A string is created and returned.  The string is computed exactly as if by the method Indigenous.toString  of
one argument.

8.10. Changes to java.lang.StringBuffer

8.10.1. public StringBuffer append (indigenous n)

The argument is converted to a string as if by the method String.valueOf  and the characters of that string are
then appended to this StringBuffer  object.  A reference to this StringBuffer  object is returned.

8.10.2. public StringBuffer insert (int offset, indigenous n)
throws IndexOutOfBoundsException

The argument is converted to a string as if by the method String.valueOf  and the characters of that string are
then inserted into this StringBuffer  object at the position indicated by offset .  A reference to this
StringBuffer  object is returned.
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8.11. Changes to java.lang.System

As listed in Table 5, Borneo has two new floating point related systems properties not found in Java.

8.12. New Subclasses of java.lang.Exception

Borneo adds a number of new exception classes to Java.  The UnknownRoundingModeException  class is a
direct subclass of RuntimeException  and is therefore an unchecked exception.
UnknownRoundingModeException  is thrown by rounding  declarations and Math.setRound  when an
invalid rounding mode is used.

As shown in Figure 19, Borneo adds many checked exception classes to model IEEE 754 exceptional
conditions.  Of these, OverflowException  and UnderflowException  have additional constructors and
methods (Figure 65).  The new constructors take float , double , and indigenous  arguments that are returned,
respectively, when the floatValue , doubleValue , and indigenousValue  methods are called.  The
float , double , and indigenous  values held in floating point overflow and underflow exceptions generated as
a result of an arithmetic operation have the relationships described in Table 9.  A programmer can create
overflow/underflow exceptions with any combination of float , double , and indigenous  values.
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public class OverflowException extends FloatingPointException
{

private float f;
private double d;
private indigenous n;

public OverflowException()
{

super();
n = d = f = 0.0f;

}
public OverflowException(float f, double d, indigenous n)

{
super();
this.f = f; this.d = d; this.n = n;

}
public OverflowException(String message)

{
super(message);
n = d = f = 0.0f;

}
public OverflowException(String message, float f, double d, indigenous n)

{
super(message);
this.f = f; this.d = d; this.n = n;

}

public float floatValue(){return f};
public double doubleValue(){return d};
public indigenous indigenousValue(){return n};

}

public class UnderflowException extends FloatingPointException
{

private float f;
private double d;
private indigenous n;

public OverflowException()
{

super();
n = d = f = 0.0f;

}
public OverflowException(float f, double d, indigenous n)

{
super();
this.f = f; this.d = d; this.n = n;

}
public OverflowException(String message)

{
super(message);
n = d = f = 0.0f;

}
public OverflowException(String message, float f, double d, indigenous n)

{
super(message);
this.f = f; this.d = d; this.n = n;

}

public float floatValue(){return f};
public double doubleValue(){return d};
public indigenous indigenousValue(){return n};

}

Figure 65 — New constructors and methods for OverflowException  and UnderflowException .
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9. Appendixes

9.1. Field Axioms
Arithmetic on real numbers forms a field.  Fields include the properties of rings; rings in turn are an extension of
quasirings.  Many local optimizations compilers perform are valid because they are derived from the field axioms.
For example, for all integers values i, i + 0 = i.  However, IEEE floating point numbers do not form even a quasiring.
As Table 38 shows, very few of the field axioms hold for IEEE arithmetic.  For two expressions to be equivalent,
they must have identical values (same sign bit, significand, and exponent) and raise the same exceptions.  The field
axioms can fail due to limited range, limited precision, or because of IEEE 754 special values.  Table 38 assumes the
round to nearest rounding mode is in effect, the signaling properties of signaling NaNs are ignored, and that all NaN
values are regarded as equivalent.  If signaling NaNs are included, multiplicative identity no longer holds.  If
different NaN bit patterns are differentiated, multiplication and addition are no longer (necessarily) commutative.

The following abbreviations are used in Table 38:
Ω = nextAfter(∞, 0) //The largest finite value
δ = nextAfter(ROUNDING_THRESHOLD, 0.0) //The largest positive number less than the rounding threshold
α = {finite floating point numbers}

Table 38 — Field axiom validity for IEEE 754 floating point arithmetic.

Field Axiom over Reals Example Status of IEEE floating point
Quasiring Properties

Closed under addition true, if ∞ and NaN are included
Associative addition (a+b) + c = a + (b+c) • (Ω + Ω) + –Ω = ∞  Ω + (Ω + –Ω) = Ω

• (1.0 + δ) + δ = 1.0  1.0 + (δ + δ) > 1.0
• (∞ + –∞)+NaN signals invalid, ∞+(–∞ +NaN) does not

Identify element for addition ∀a, a + 0 = 0 + a = a false
if a is –0, a + (+0) = +0, +0 is distinguishable from –0

Closed under multiplication true, if ∞ and NaN are included
Associative multiplication (a*b)*c = a*(b*c) false

• roundoff and loss of precision on underflow
• (Ω * 2.0) * (0.5) = ∞  Ω * (2.0 * 0.5) =Ω
• (∞*0.0)*NaN signals invalid, ∞*(0.0*NaN) does not

Identity element for
multiplication

∀a, a*1 = 1*a = a true

Zero annihilator ∀a, a*0 = 0*a = 0 false
• 0 * NaN and NaN * 0 are NaN, NaN is not 0
• 0 * ∞ and ∞ * 0 are NaN, NaN is not 0

Commutative addition ∀a ∀b, a + b = b + a true
Distributivity a*(b + c) = a*b + a*c

and
(b + c)*a = b*c + c*a

false
• roundoff
• overflow/underflow thresholds
• differences signaling invalid with ∞, NaN, and 0.0

Ring Properties
Additive inverse ∀a ∃ b,

a + b = b + a = 0
false
• ∞ + –∞ is NaN, NaN is not 0; ∞ + α = ∞, ∞  0
• NaN + α is NaN and NaN + ∞ is NaN, NaN is not 0

Field Properties
Commutative multiplication ∀a ∀b, a*b = b*a true
Multiplication inverse except for a=0,

∀a ∃ b,
a*b = b*a = 1

false
• many ordinary floating point values lack exact inverses
• ∞ * 0 is NaN, ∞ * NaN is NaN and ∀ α ≠ 0, ∞ * α=±∞
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9.2.  Redundant JVM Instructions

Table 39 — 47 truly redundant JVM opcodes.

Redundant Opcode Equivalent Sequence
aload_0, aload_1, aload_2, aload_3 aload n
astore_0, astore_1, astore_2, astore_3 astore n
dload_0, dload_1, dload_2, dload_3 dload n
dstore_0, dstore_1, dstore_2, dstore_3 dstore n
fload_0, fload_1, fload_2, fload_3 fload n
fstore_0, fstore_1, fstore_2, fstore_3 fstore n
iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3, iconst_4, iconst_5 bipush n
iload_0, iload_1, iload_2, iload_3 iload n
istore_0, istore_1, istore_2, istore_3 istore n
lload_0, lload_1, lload_2, lload_3 lload n
lstore_0, lstore_1, lstore_2, lstore_3 lstore n

Table 40 — JVM bytecodes which could be expressed in terms of other opcodes with some modification to
other portions of the class  file.

Unnecessary Opcode Equivalent Sequence
dconst_0, dconst_1 bipush n, i2d
f_const_0,  f_const_1, fconst_2 bipush n, i2f
lconst_0, lconst_1 bipush n, i2l
dneg bipush 0, bipush 1, isub, i2d, dmul
fneg bipush 0, bipush 1, isub, i2f, fmul
ineg bipush 0, swap, isub
lneg bipush 0, i2l, dup2_x2, pop2, lsub
dup instructions
dup_x1, dup_x2, dup2_x1, dup2_x2

More complicated dup’s can be replaced by sequences of
simple dup’s and loads and stores to extra local variables

ifnonull/ifnull Only one of these instructions is needed, the order of
branches can be reversed instead.

iinc m n iload m, bipush n, iadd, istore m

The 11 rows of Table 39 contain 47 obviously redundant opcodes that could be replaced by their more general
counterparts.  The redundant opcodes were included to save space and execution time by making some common
instruction sequences fit into a single byte.  The opcodes in Table 40 can also be replaced by an equivalent sequence
of other JVM instructions, but at the cost of increasing stack utilization, requiring more local variables, or
performing additional runtime conversions between numeric types.  Since there are approximately 200 instructions
defined in JVM (excluding the _quick pseudo-instruction variants), nearly one quarter of the opcode space is devoted
to peephole optimizations while precious few free opcodes remain.

A simple translator could be created to purge existing class  files of the 47 opcodes in Table 39, freeing
those opcodes for other uses.  The translator must properly update all control transfer targets in the code portion of
the class  file.  Except for the ret instruction, all JVM control transfers take their target from the class  file; a
branch target cannot be computed at runtime.  The ret instruction takes its target from a returnAddress  value
stored in a local variable.  However, a return address can only be generated by a jsr or jsr_w instruction pushing a
return address on the stack (the astore instructions are used to store a returnAddress  in a local variable).  Since
no computation can be done on a returnAddress  value, the translator does not need to modify the uses of jsr and
ret instructions.  When the new class  file is generated, the padding for the lookupswitch and tableswitch
instructions may need to be changed.  Besides changing the code attribute of the class  file, such a utility also needs
to modify the exceptions table to update the code offsets handled by different catch  blocks.  The largest offset of
the code attribute that can be covered by an exception table is 65,534 bytes.  Since the translator lengthens the code
attribute, it may not be possible to directly convert a very long code attribute to one that does not use the redundant
instructions.  However, such a long method could be split into parts.
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9.3. A Brief History of Programming Language Support for Floating Point Computation
In roughly chronological order, the following sections discuss the floating point support provided by a number of
programming languages.  Computational peculiarities of particular languages are also described.

9.3.1. FORTRAN

9.3.1.1. Early FORTRAN

[Six months] was to remain the interval-to-completion until it was actually completed over two years later.
—John Bachus on the first FORTRAN compiler

The purpose of the original FORTRAN project, started in approximately January 1954, was to provide a practical
“automatic programming system” for the new IBM 704 computer.  The 704 is a member of the first generation of
commercial computers to have index registers and floating point arithmetic in hardware.  On earlier machines,
interpreters for virtual architectures provided index registers and floating point, slowing the real machine down by a
factor of five to ten.  FORTRAN aimed to generate code for scientific programs that were nearly as efficient as hand
generated assembly, a task made more challenging by the improved hardware capabilities of the 704; there was no
longer an order of magnitude slowdown to hide behind [7]!

In a preliminary report late in 1954, FORTRAN has an unusual rule for mixed integer-floating point
expression evaluation:  the arithmetic used to evaluate an expression is either all integer or all floating point,
determined by the type of the variable being assigned to.  The preliminary report also proposes new facilities to be
added to the language, including complex and double precision arithmetic.  Parentheses are used to help the compiler
perform common subexpression elimination [7].

By the release of the programmer’s reference manual for the completed FORTRAN I language, the
language designers felt mixed integer-floating point expressions should not have implicit type coercions generated by
the compiler.  Only integer exponents and inter function arguments are allowed in expressions having other floating
point components [7].

9.3.1.2. FORTRAN II

FORTRAN II is an evolution of earlier FORTRAN dialects.  Besides subroutines and improved debugging,
FORTRAN II has a different treatment of arithmetic than earlier dialects.  Integer to floating point and floating point
to integer conversions occur across assignment statements, but mixed expressions are still quite restricted.  When
converting floating point to integer, round to zero is used; library methods also provide explicit conversion
capabilities.  By a naming convention, single precision floating point variables can be used (the names of integer
variables start with the letters I, J, K, L, M, or N; variables starting with other letters are floating point).  To use
double precision numbers for a widest available style expression evaluation, a “D” can be placed in the first card
column (punch cards were used to input programs to the computer).  However, even if a double variable was being
stored into, integer to floating point conversion would only occur over the single precision range.  Only single
precision decimal floating point numbers are read in or printed out; to preserve full double precision binary or octal
input and output must be used.  Language primitives are provided to test for various overflow conditions.  While
requiring parentheses to be respected, FORTRAN II assumes that “mathematically equivalent expressions are
computationally equivalent.”  Instead of warning programmers of the vagaries of floating point computation, the
FORTRAN II manual discusses the problems of integer arithmetic!  “Although the assumption concerning
mathematical and computation equivalence is virtually true for floating point expressions, special care must be taken
to indicate the order of fixed point multiplication and division...” [49].

9.3.1.3. FORTRAN IV

Coming a few years after FORTRAN II, FORTRAN IV continued FORTRAN’s development and refinement.
Variables can be explicitly declared instead of relying on the naming convention.  Both single and double precision
are available; single values are promoted to double in mixed-mode expressions using strict evaluation.  Implicit
conversions between integer and floating point in expressions do not occur.  More extensive library support is
provided for the double type than in FORTRAN II.  FORTRAN IV preserves the FORTRAN II assumption that
“mathematically equivalent expressions are computationally equivalent.”  When a floating point literal found in the
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source program and a string representing a floating point number read in at runtime are converted to binary, “there
may be a difference in the low-order bits of the same constant arising from these two sources” [50].

9.3.1.4. FORTRAN 77

FORTRAN 77 is a replacement for FORTRAN 66, which is in turn based on FORTRAN IV.  The FORTRAN 77
standard [3] describes the behavior of legal programs; a given implementation is free to provide extensions to the
standard, including adding new features and removing limitations.  For example, while a standard FORTRAN 77
program cannot have a statement with more than 1320 characters, a FORTRAN 77 compiler has various options for
dealing with such a statement: report an error, accept and compile correctly, or even issue no warning and compile
such a long statement incorrectly.  FORTRAN 77’s major changes from FORTRAN 66 include a character data type
and additional control flow constructs.

FORTRAN 77 does not give requirements for decimal to binary conversion.  Two base floating point types,
single and double, are supported although “the range or precision of numeric quantities and the method of rounding
of numeric results” is not specified beyond that double must have more precision than single.  A complex type with
single precision real and imaginary portions is also included.  Signed zeros are not supported in the FORTRAN 77
standard; if two zeros are present they must be treated identically.  Even if represented internally, a negative zero
must be printed without a minus sign [3].

Strict evaluation is used for numeric expressions.  If an operation has mixed integer and floating point
operands, the integer operand is converted to the floating point type.  Implicit coercions between integer and floating
point types also occur across assignment statements; assigning a floating point value to an integer rounds toward
zero.  Various library functions return floating point numbers rounded to integer in various ways; INT  rounds to zero
and NINT rounds to nearest [3].

While FORTRAN 77 requires that explicit parentheses be respected, the compiler has some leeway to
evaluate “any mathematically equivalent arithmetic expression.”  Explicit license is given to use commutativity of
addition and multiplication, associativity of addition, and distributivity of multiplication over subtraction.
Intermediate expressions may have implementation-dependent types depending on the expression evaluation used by
the compiler [3].

9.3.2. APL
The design of APL (A Programming Language) began around 1956.  Initially created for data processing tasks, APL
was influenced by mathematical notation and has numerous built-in operators acting on both arrays and scalar values.
There is no operator precedence; expressions are evaluated from left to right.  Implementation was not seriously
attempted until 1964.  Unlike early FORTRAN, optimal speed was not the primary implementation goal.  Flexibility
for language experimentation and limiting concessions to machine-specific considerations were more important [29].

Both integer and floating point numbers are used in APL.  When values exceed the range of integers,
floating point numbers are automatically introduced.  Arbitrary precision arithmetic is not provided, so to allow
comparisons of very close numbers to return true, a comparison tolerance, or “fuzz” was introduced into the
language [29].  For example, after executing

Y ← 2 ÷ 3 and X ← 3 × Y

the intention is to allow 2 = X to be true even though X is not exactly equal to 2 [29].  In general, APL’s operators
are designed to preserve various identities [28].  However, these fuzzy comparison semantics break many desirable
properties of floating point comparison.  For example, with a fuzzy comparison, floating point equality is not
transitive.  Consider three numbers A, B, and C where B is A + comparison tolerance and C is B + comparison
tolerance.  A = B and B = C are true, but A = C is false since the difference between A and C is greater than the
comparison tolerance.  At first the comparison tolerance was fixed at 10-13 but was later adjustable.  Setting the
comparison tolerance to zero yields exact comparisons.

APL defines the value of 0 ÷ 0 to be 1.  This definition preserves the identity X / X = 1 for all values of X.
However, this definition breaks other equally valid and useful identities such as 0 / X = 0 [71].  In IEEE arithmetic,
0/0 is a NaN.

The system variables of APL provide an interface to various aspects of the APL environment and the
underlying processor.  Besides setting the comparison tolerance, system variables can also define latent expressions
to be executed when exceptional conditions occur [30].  System variables can be localized in APL, giving them
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copy-on-write semantics.  A program, as it is invoked, can set a system variable and the variable’s previous value is
restored when the program exits.

9.3.3. ALGOL 60
Here is a language so far ahead of its time, that it was not only an improvement on its predecessors,

 but also on nearly all its successors.
—C. A. Hoare on ALGOL 60

ALGOL 60 is a watershed language, introducing many precedents and structures still visible in languages over thirty
years later.  Designed by a multi-national committee, ALGOL 60’s goals include supporting numeric processing.
The ALGOL 60 report [75] does not have accuracy requirements for decimal to binary conversion stating, “the
actual numerical value of a primary is obvious in the case of numbers.”  However, the hardware variability of
floating point is acknowledged.  There is a single real  type; an integer  value is converted to real  in mixed
mode expression evaluation.  The transfer function from real  to integer , entier , rounds toward zero.  If a
expression of type real  is assigned to a variable of integer  type, the real value is rounded to nearest [75].

9.3.4. Algol 68
Developed several years after Algol 60, the design of Algol 68 stresses orthogonality and extensibility.  Algol 68
supports the creation of user defined data types and operators.  Algol 68 has a family of real  types: real , long
real , long long real , and so on.  However, the sizes and precisions of these types is implementation
dependent.  The functions round  and entier  are provided to convert real  to integer  by rounding to nearest
and truncating, respectively.  Integers are automatically widened to real  (and long n real  to long n+1 real ) in
assignment statements and parameter passing.  The standard arithmetic operators are included via a general purpose
operator mechanism and are not a special language construction.  In addition to defining operators for user-defined
types, programmers can redefine existing operators, such as making + on integers execute subtraction.  Ten operator
precedence levels are available and the precedence of built-in operators can also be modified so that 1+2*3 evaluates
to 9 instead of 7 [92].

9.3.5. C
In the early 1970’s, C was created to be the systems programming language for the UNIX operating system.
Therefore, C is a fairly low level language designed to expose system dependent details and generate fast
executables.  C was ported along with UNIX to a wide variety of platforms with various floating point formats.  In
1983, an ANSI (American National Standards Institute) committee was formed to standardize the C language.  Both
versions of C are discussed.

9.3.5.1. Pre-ANSI C

No constraints are given for base conversion.  Early C supports two floating point data types, float  for single
precision and double  for double precision numbers.  Pre-ANSI C uses the double  type for all floating point
expression evaluation; all floating point literals are also of type double .  Floating point to integer conversion is
truncated.  Across assignment statements, both implicit floating point to integer and integer to floating point
conversions may occur depending on the type of the variable or array location being assigned to.  However,
automatic coercions do not occur for function arguments; explicit casts are required.  C allows wide compiler latitude
in expression evaluation:  “the compiler considers itself free to compute subexpressions in the order it believes most
efficient, even if the subexpressions involve side effects” [64].  The grouping of parentheses does not need to be
respected; the compiler is allowed to treat mathematically associative operations (such as multiplication) as
computationally associative.  To force a particular evaluation order, the intermediate results must be stored into
explicit temporaries.

9.3.5.2. ANSI C

Among other changes to the language, ANSI C modifies the floating point expression evaluation rules.  Instead of
using double  for widest available expression evaluation, ANSI C uses strict evaluation.  A new type, long
double  is introduced.  Suffixes are added to floating point numbers to create float  and long double  numeric
literals.  Automatic integer to floating point conversion also occurs for function arguments in ANSI C.  The compiler
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can no longer treat mathematically associative operations as computationally associative and explicit parentheses
must be respected.  In both flavors of C, floating point exception handling is implementation defined [65].

9.3.6. Pascal and Modula-2
I have made this letter longer than usual, because I lack the time to make it short.

—Blaise Pascal

The programming language Pascal, designed by Niklaus Wirth around 1970, was a relativity simple alternative to the
growing complexity of other languages in the Algol family, such as Algol 68.  Pascal includes many facilities to
create new user defined types, including subrange types, nested structures, and unions.

Pascal has one floating point type, Real , an “implementation-defined subset of real numbers” [53].  Other
built-in types in Pascal are ordinal types; these types can be used in a variety of contexts where Real  cannot.  For
example, ordinal types have prec  and succ  functions which provide the next smaller and next larger value.  These
functions are not provided for the Real  type, even though floating point numbers do have a well-defined concept of
next larger and next smaller value.  In IEEE arithmetic, the functionality of prec  and succ  for floating point
numbers is provided by the recommended function nextafter .  Also, unlike for the Integer  type, Pascal does
not support declaring subranges of Real .

Decimal to binary conversion in Pascal does not explicitly require correct rounding, only that the value
denoted by a character sequence be assigned to a variable.  However, a decimal string may denote a value not
representable in binary.  No explicit requirements are given for correctly rounded binary to decimal conversion either
[53].

Since Pascal only has one floating point type, all floating point operations are performed in that type.  For
arithmetic operands, an implicit Integer  to Real  conversion occurs if one of the operands is of type Real .  The
same coercion occurs if an Integer  argument is given for a Real  value parameter.  Integer  values can be
assigned to Real  variables without an explicit coercion.  The standard function Trunc  takes a Real  and returns an
Integer  rounded to zero while Round takes a Real  value and returns an Integer  rounded to nearest.

Approximately ten years after designing Pascal, Niklaus Wirth designed Modula-2 [100] based on
experience from Pascal and Modula.  Modula-2 has many features absent in Pascal, such as modules and separate
compilation, but the floating point support is quite similar.  Base conversion is implementation dependent.  Only a
single implementation dependent floating point type REAL is required.  Modula-2 removes Pascal’s implicit integer
to floating point conversions.  Instead, the transfer function FLOAT must be used to convert non-negative integers to
REAL.  Round is not included in Modula-2’s standard library, although particular implementations can include such
transfer functions that are not required by the standard.  The document specifying Modula-2 warns of the
non-associativity of floating point addition, suggesting “the correct way [to sum a series of terms] is evidently to start
with the small terms.”

9.3.7. Ada
Starting in 1974, in order to consolidate the large number of programming languages being used in embedded
applications, the United States Department of Defense funded the specification and development of the Ada
programming language [95].  Ada’s design goals include support for managing large programs as well as interfacing
to low-level hardware capabilities.

Ada does not specify any accuracy constraints for base conversion.  The base floating point type in Ada is
FLOAT.  From FLOAT, other floating point types can be specified as subranges or as a floating point type with a
minimum precision of some number of decimal digits.  These derived types can use all the existing floating point
literals and all built-in operators.  Function names can be overloaded in Ada.  Each derived floating point type does
not need its own set of library functions; the Ada type system can determine the appropriate library function to call
for a derived floating point type.

Ada floating point numbers follow the Brown model [9] of floating point numbers.  The Brown model
distinguishes between model numbers, which adhere to Brown’s axioms, and machine numbers, which may not.
Essentially, in order to represent a variety of floating point arithmetics with different computational peculiarities, the
model numbers have reduced range and/or precision compared to the actual machine floating point numbers.  By
only considering well-behaved model numbers, the Brown model aims to allow programs to be proved portable
across various floating point architectures.  Unfortunately, Brown’s model is not very useful for creating portable
numerical programs.
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Brown’s model (or any other such universal model) describes a hypothetical machine that simultaneously
exhibits the union of the arithmetic irregularities of all possible machines described by the model.  Suppose a
numerical analyst wants to prove a program works under Brown’s model.  If he is unable to construct a proof, the
program might be scrutinized for a bug.  If no bug is found, the numerical analyst may insert additional tests to try to
strengthen the program against possible threats.  However, the program may actually work on any given actual
architecture, even though a general proof cannot be constructed showing the program works on all (possibly
perverse) architectures.  A well defined standard, such as IEEE 754, allows much stronger assumptions to be made
about the arithmetic, easing proof construction [61].

Arithmetic operations in Ada can throw exceptions.  The conditions OVERFLOW and DIVIDE_ERROR
are collapsed into the single exception NUMERIC_ERROR since it is claimed “their distinction is rarely helpful for
recovery purposes” [10].  Optimizations are allowed to change the result of arithmetic expressions.  For example,
expressions can be rewritten so that the modified version does not throw an exception the original expression would
throw.  Extra precision can be used in expression evaluation and, within some limits, expressions can be rewritten
using associativity.  Floating point to integer conversion rounds to nearest [95].

Ada has operator overloading.  Many existing operators can be overloaded, but new operators cannot be
introduced.  Unlike other languages with overloading, Ada uses result overloading to determine which version of an
operator or function to call.  Instead of just using the types of the arguments to determine which function to call,
result overloading also considers the return type of the function [95].

9.3.8. Common Lisp
Introduced in 1984, Common Lisp intended to span the functionality of several diverging Lisp dialects, providing a
common, portable, expressive, and stable base for further development.  The designers of Common Lisp were
cognizant of IEEE 754 and the language provides extensive numerical primitives and specifies many details of the
behavior of trigonometric functions on complex numbers [88].

Common Lisp has a variety of numerical data types.  Besides arbitrary length integers and exact ratios of
integers (together integers and ratios are rationals), Common Lisp has four floating point data types,
short-float , single-float , double-float , and long-float .  For each floating point type, the
Common Lisp standard has recommended minimum precision and exponent size.  Depending on the number of
hardware floating point formats, various mappings of language type to hardware format are permitted.  Complex
numbers are also included; the real and imaginary parts of a Common Lisp complex number are not necessarily
floating point numbers.  For numeric operators, strict evaluation is used; if a rational and a floating point number are
mixed, the rational is converted to the floating point type of the other operand.  Mathematically associative
operations can be carried out in any order, possibly affecting which automatic conversions occur (and what answer is
delivered).  Common Lisp has four functions to convert floating point values to integer, including rounding to ±∞,
truncating to zero, and rounding to nearest [86].

While the Common Lisp specification includes formulas for the complex trigonometric functions, the
implementor is repeated warned

These formulae are mathematically correct, assuming completely accurate computation.  They may be terrible
methods for floating-point computation! Implementors should consult a good text on numerical analysis. [86]

A “floating point cookbook” [19] is suggested as being possibly useful for implementing the irrational and
transcendental functions but [19] does not discuss functions on complex arguments.  In [55] Kahan gives a consistent
scheme for the behavior of complex elementary functions at “branch cuts.”

9.3.9. C++
C++ [89] was initially designed in the early and mid 1980’s as an extended version of C that included classes.  Over
the years, C++ has grown to include additional features such as templates, exception handling, and operator
overloading.  The floating point types, expression evaluation rules, and compiler generated conversions in C++ are
the same as those in ANSI C.  The C++ draft standard [102] includes headers and classes to determine information
about the floating point capabilities of a machine, such as if IEEE 754 floating point is available.  C++ throws no
floating point exceptions.

Most of the built-in C++ operators can be overloaded, including the arithmetic, comparison, and array
access operators.  Programmers cannot define operators not already in the language.  Both binary and unary
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operators can be overloaded; at least one argument must be a user-defined type.  Operators taking a built-in type as
the first argument cannot be a member function of a class.

9.3.10. ML
ML originally arose during the mid 1970’s as a system for constructing logical proofs and eventually evolved into a
full-fledged programming language.  The exception mechanism of ML has served as a  model for the exception
mechanisms of a number of other languages, including C++.

ML does not place constraints on decimal to binary conversion.  ML has a single floating point type and all
conversions between integer and floating point numbers must be explicit.  The floor  function returns the integer
value of a floating point number rounded toward negative infinity [72].

ML provides a rich operator overloading mechanism.  Any identifier, either an alpha-numeric identifier or
an identifier composed of symbols (#,$,!, etc.), can be treated as an infix operator.  The user defined operators can be
right or left associative and have one of 10 predefined precedence levels.  The text of an operator does not carry any
indication of its precedence.  Therefore, since the precedence of operators is not known to the parser, abstract syntax
trees cannot be easily built until after typechecking, somewhat complicating the compiler’s front end [14].

9.3.11. Haskell
The Haskell language is a modern lazy functional language designed in the late 1980’s.  Haskell aims to provide a
language suitable for teaching, research, and applications while also reducing unnecessary diversity in functional
programming languages [79].

Haskell’s numeric types are heavily influenced by Common Lisp and Scheme.  The numeric types include
arbitrary and fixed length integers, rational numbers, two floating point types (Float  and Double ), and complex.
Explicit coercions are used to convert between numeric types.

The designers of Haskell are aware of but have not fully embraced IEEE 754 arithmetic:  “Some, but not
all, aspects of the IEEE standard floating point standard [sic] have been accounted for in the class RealFloat ”
[79].  Although not included in the final version, early drafts of Haskell version 1.4 have an optional library of new
arithmetic operators to perform IEEE directed rounding.

The Haskell infix operator facilities are similar to those in ML.  Any function may be treated as an infix
operator by enclosing the function identifier in backquotes; infix operators can be treated as prefix functions by
surrounding the operator in parentheses.  There are ten precedence levels and operators can be declared to be right,
left, or non-associative [79].  The standard infix operators are just predefined symbols and may be rebound.
Functions may also be overloaded, unlike ML.

9.3.12. Matlab
Matlab (matrix laboratory) was originally written in the late 1970’s to provide a convenient interface to the linear
algebra algorithms from the LINPACK and EISPACK efforts.  Over the years Matlab has become very widely used
in academia and industry and now includes support for sparse matrices, graphics, and symbolic expressions [39].

The fundamental datatype in Matlab is a matrix whose elements are double precision real or complex
numbers.  Matlab provides an interpreted environment with extensive libraries to manipulate matrices in addition to
a small imperative language and interfaces to other languages such as C and FORTRAN.  No explicit requirements
are given for correctly rounded base conversion.  Functions are provided to round floating point values to integers
under all four rounding modes (in case of a tie, the round to nearest function rounds out instead of IEEE 754-style
round to nearest even) [39].

Since basic Matlab uses the floating point formats native to a given platform, numbers other than IEEE 754
double , such as the VAX D or G formats, may also be used.  Matlab has functions that return the rounding
threshold and the smallest and largest positive floating point numbers.  In newer versions of Matlab, special variables
hold NaN and infinity values.  However, sticky flags are not supported beyond warning messages issued for some
invalid operations.  More recent Matlab releases also support variable precision arithmetic for symbolic
computation.  To control the amount of precision used for symbolic computation, a global Digits  parameter can
be set or the vpa  function can be used to evaluate a single expression to a given precision without changing the
global precision [39].
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9.3.13. Mathematica
Since 1988 the Mathematica software system has featured arbitrarily precise arithmetic, symbolic expression
manipulation, and graphical output.  Mathematica symbolically manipulates expressions by applying a series of
re-write rules until a fixed point is reached.  To prevent infinite loops, the call stack depth can be limited.
Programmers can declare their functions to be associative and commutative to control how expressions are
simplified.  The language also include pattern matching and lambda expressions [101].

Mathematica numeric types include arbitrarily large integers, exact integer ratios, arbitrarily high precision
real numbers, and complex versions of the above.  The Mathematica function N[]  explicitly specifies the precision
to use for a calculation; it can cause the available hardware floating point arithmetic to be used instead of arbitrarily
high precision.  Mathematica’s number system includes infinities and Indeterminate , which is analogous to
NaN.  IEEE 754 style sticky flags are not supported.  Mathematica has functions to round real numbers to integers in
various ways.  Correctly rounded base conversion is not explicitly required [101].

When operating on arbitrarily high precision real values, Mathematica uses a form of significance
arithmetic to determine the precision of the result.  Significance arithmetic is a scheme where unnormalized numbers
are used to provide an indication of the accuracy of the number; the accuracy of a result is a function of the
magnitudes and accuracies of the inputs.  Since only the bits believed to be significant are stored, depending on the
details of the implementation, significance arithmetic constrains the expressed uncertainty in the result to be 1 or ½
of a unit in the last place (ULP).  A number in significance arithmetic can be thought of as representing an interval
between the two adjacent numbers.  The error inferred from the inputs to an operation may not be exactly expressible
in a significance arithmetic result.  Therefore, a policy is needed for returning either a result more or less precise than
deserved.  Given such a policy, a “folk theorem” states it is always possible to construct a sequence of n operations
such that the width of the interval grows or shrinks faster than it should by a factor of 2n/2 [59].  For this reason,
significance arithmetic cannot be entirely trustworthy.

9.3.14. SANE, Standard Apple Numeric Environment
SANE [6] (Standard Apple Numeric Environment) is an interface to IEEE 754 features defined and supported by
Apple Computer, Inc. on various hardware platforms and in several programming languages.  In [6], the interface to
SANE is given in terms of a Pascal dialect, but C bindings are discussed as well.

SANE requires binary to decimal and decimal to binary conversion to meet or exceed the correctly rounded
requirements in IEEE 754.  SANE defines four datatypes, three floating point types corresponding to IEEE 754
formats (single, double, and double extended) and one integer type, comp, implemented with double extended
arithmetic.  For all SANE datatypes, expression evaluation uses the widest available strategy with double extended
precision.  Floating point constants are stored in extended format.  Conversions from double extended to integer or
comp are influenced by the dynamic rounding mode.  For Apple’s SANE Pascal, INF  is a predefined constant for
infinity.

SANE provides the IEEE recommended functions, but due to a historical accident the arguments of
copysign  are reversed.  The SANE logb  function follows the recommendations in IEEE 854 instead of IEEE
754.  It is not explicitly stated whether or not scalb  is sensitive to dynamic rounding modes.

Functions that get and set the rounding mode, get and set the rounding precision, get and set the sticky flags,
and get and set the trapping status are included in SANE.  If a condition is being trapped on, the computation
presumably aborts; SANE does not have a mechanism for providing user-defined trap handlers.  Floating point state
is treated as a global variable; functions inherit the dynamic floating point environment of their caller and the caller’s
environment can be changed by the callee.  To code algorithms that do not signal unnecessarily, SANE has
ProcEntry  and ProcExit  procedures.  ProcEntry  saves the current environment and installs a default
environment (rounding to nearest, non-trapping mode, sticky flags cleared, etc.).  ProcExit  takes a environment to
be restored, saves the current exception state, and signals the exceptions raised in the saved exception state.  For
example, if the environment to be restored was trapping on overflow, calling ProcExit  after an overflowing
operation had occurred would cause an overflow trap to occur.  SANE disallows optimizations that would change the
value or observable side effects of floating point operations [6].

9.3.15. LIA
The 1994 LIA-1 standard (Language independent arithmetic, Part 1 ISO/IEC 10967-1) [52] aims to enhance the
portability of programs by providing a parameterized machine model of floating point and integer arithmetic where
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properties of the arithmetic can be queried (possibly at runtime).  The LIA-1 standard sets out to make “as few
presumptions as possible about the underlying machine architecture,” but the floating point of Cray architectures
does not meet LIA-1 requirements and the LIA-1 standard has frequent comments about the relationship of LIA-1
requirements to IEEE 754.  While LIA-1 claims that “the floating point requirements of this part of ISO/IEC 10967
[LIA-1] are compatible with (and enhance) IEC 559 [IEEE 754],” only a subset of IEEE 754 features are included in
the base LIA-1 standard.  Many of  IEEE 754’s features including special NaN and infinity values, signed zero,
rounding to ±infinity, rounding to nearest even, square root operation, and the inexact flag are not directly covered in
LIA-1.  Full IEEE 754 conformance (indicated by a boolean iec_559  value) is an option under LIA-1, with a few
caveats.  To conform to LIA-1, a program with a raised underflow, overflow, or invalid flag cannot be allowed to
“complete successfully,” an error must be reported in a  “hard to ignore” manner.  Additionally, LIA-1 defines a
“undefined” flag which is (almost) the union of the IEEE 754 invalid and divide by zero flags [52].53

LIA-1 is primarily concerned with the precise definitions of basic arithmetic operations; many other
language features relevant to floating point computation are not addressed in LIA-1.  For example, various options
for arithmetic on operands of different types are not given nor are requirements for binary to decimal conversion
listed.  Many LIA-1 requirements concern documentation for language standards or compiler implementations, such
as what kinds of floating point optimizations are permissible or if extended precision can be used in expression
evaluation.  Each language can have different interfaces to LIA-1 features as long as the features are documented.

The annex of the LIA-1 standard says “It makes no sense to write code intended to run on all machines
describable with the LIA model — the model covers too wide a range for that.”  Instead, LIA-1 facilities can be used
to determine if a platform meets an algorithm’s needs and expectations.  LIA-1 does provide a framework for
documenting IEEE 754 conformance; but since the entirety of IEEE 754 is not required, many corner cases are not
addressed by LIA-1.  For example, many of the IEEE 754 recommended functions have counterparts in LIA-1
required functions.  However, since LIA-1 does not include infinity or NaN, the signaling behavior of the IEEE 754
recommended functions on those inputs is outside the scope of LIA-1.  LIA-1 does not provide any guidance for the
undefined cases of IEEE recommended functions such as scalb .

While it is claimed that “The documentation required by LIA-1 will highlight the differences between
‘almost IEEE’ systems and fully IEEE conforming ones,” the parameters in LIA-1 do not even fully characterize the
behavior of existing “almost IEEE” machines.  For example, by default the Alpha architecture does not operate on
subnormal numbers, in violation of the standard.  Many other processor, such as the UltraSPARC, have similar
non-conforming flush to zero modes.  Therefore, in a LIA-1 environment with a processor flushing to zero, the
iec_559  value must be false .  Such a processor performs rounding to nearest even for normal operations.
However, the LIA-1 characterization of rounding modes does not distinguish between IEEE 754’s round to nearest
even and other round to nearest schemes, such as the VAX policy of always rounding away from zero in case of a tie.
Therefore, information about the arithmetic is lost; an otherwise IEEE 754 compliant machine flushing to zero
cannot be distinguished in LIA-1 from an arithmetic that is similar to IEEE 754 except that flush to zero and VAX
round to nearest (or round to nearest odd) is used.

9.3.16. C9X
The C9X floating point proposal addresses two concerns for numeric programming in the C language; namely
providing more predictable floating point arithmetic and a standard language binding for IEEE 754 features [93],
[94].  Since C still aims to run on non-IEEE machines, full IEEE 754 support is not mandatory in C9X.  By default, a
C9X implementation is not required to respect all IEEE 754 floating point semantics, even on IEEE 754 compliant
hardware.  The following discussion focuses on the C9X requirements for fully IEEE 754 compliant
implementations.

C9X does not require correctly rounded decimal to binary conversion over the entire range of possible
values; however, correctly rounded conversion must occur if a string has less than or equal to DECIMAL_DIG digits.
DECIMAL_DIG is large enough to ensure that all binary floating point numbers can be expressed via a decimal
string.  These requirements are more stringent than the IEEE 754 conversion requirements.  To specify exact floating
point values more easily, C9X supports hexadecimal floating point literals.  To create special IEEE 754 values, the
C9X strtod  function (str ing to  double ) recognizes “inf ” and “infinity ” as representing infinity and
“nan ” and “nan( character sequence ) ” as representing quiet NaNs.  The character sequence  is
intended to allow additional information to be encoded in a NaN’s significand in a platform-dependent manner.  For

                                                          
53 If the undefined flag is cleared or set, both the invalid and divide by zero flags must be cleared or set.
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backwards compatibility, instead of a NaN, strtod  returns 0.0 if given a string argument that does not denote a
floating point number.  Other input and output library functions, such as printf , are also modified to handle the
new floating point features.  Runtime decimal to binary conversion is influenced by the dynamic rounding mode
while compile time conversion always occurs under round to nearest [94].

In C9X, the float  type corresponds to the single format and the double  type to the double format.  A
third type, long double  is platform dependent, corresponding to a floating point type at least as precise as
double .  An IEEE extended format should be used if available in preference to a non-IEEE format or to double .
Additionally, C9X has two other platform dependent types defined as typedef ’s in <math.h> , float_t  and
double_t .  float_t  is at least as wide as float  and double_t  is at least as wide as double . The type
float_t  may map to float , double , or long double  and double_t  may map to double  or long
double .  The mapping used is implementation dependent and is related to the expression evaluation policy.  The
mapping of type _t  should be to the most efficient type at least as wide as type  [94].

Table 41 — Type mappings used in C9X for different evaluation methods.

FLT_EVAL_METHOD float_t  mapping double_t  mapping
0 float double

1 double double

2 long double long double

any other value implementation defined implementation defined

C9X allows a number of conventions for expression evaluation, depending on what is most efficient for a
given platform.  The mapping used is indicated by the constant macro FLT_EVAL_METHOD; the various
possibilities are listed in Table 41.  If FLT_EVAL_METHOD is 0, strict evaluation is being used.  If
FLT_EVAL_METHOD is 1 or 2, a variant of widest available is being used.  The programmer cannot request a
particular evaluation strategy; the strategy used by the compiler can only be queried, not set.  If
FLT_EVAL_METHOD is outside [0, 2] some other implementation defined evaluation strategy is in use.  Early drafts
of C9X supported scan for widest evaluation, but it was removed from later versions due to lack of prior art [93].

A variety of integer to floating point conversions are provided in C9X.  The functions nearbyint  and
rint  return the floating point number with the integral value of the floating point argument using the current
rounding direction (nearbyint  raises inexact but rint  does not).  The round  function returns the nearest
integral value in floating point, rounding ties away from zero while trunc  rounds its argument to the integer value
in floating point no larger in magnitude than the argument.  roundtol  rounds a floating point argument to the
nearest integer value, rounding away from zero in ties; if the result is outside the range of long int , the result is
unspecified.  Casting from floating point to integer always rounds toward zero.

The result of converting a floating point NaN or infinity to integer is unspecified.  Whether or not casting
from floating point to integer can signal inexact is unspecified.  C9X keeps ANSI C’s rules for implicit integer to
floating point and floating point to integer conversions.

The new header file <fenv.h>  provides routines to access and control the floating point state.  Functions
are provided to get and set the dynamic rounding mode and sticky flags.  C9X only directly supports non-trapping
execution but a few of the library functions interact with floating point traps that change control flow.  For example,
the feraiseexcept  function raises the conditions represented by its argument.  If trapping mode is being used,
feraiseexcept  causes a trap to occur; feraiseexcept  does not merely set the sticky flags [94].  However,
C9X has no library function to install custom trap handlers.

Additional functions in <fenv.h>  treat the floating point environment, rounding modes, sticky flags, and
possibly other information, as an entity that can be saved and restored (similar to the ProcEntry  and ProcExit
in SANE).  For example, on the x86, the precision control (controlling whether arithmetic operations are rounded to
float , double , or double extended  precision) is part of the floating point environment.

While C9X has library functions to manipulate the floating point state, using those functions is not sufficient
information to make the compiler respect IEEE 754 floating point semantics.  The macro FENV_ACCESS_ON must
be used to ensure the compiler does not violate floating point semantics due to overly aggressive optimization.   If
IEEE 754 features (such as changing the rounding mode) occur when FENV_ACCESS_OFF is true, the results are
undefined.  FENV_ACCESS_ON acts as a lexically scoped declaration.  While C9X defines
FENV_ACCESS_DEFAULT, the value for this default is undefined.  Similarly, FP_CONTRACT macros control in a
lexically scoped manner whether or not a fused mac can be used.  FP_CONTRACT_DEFAULT also has an
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implementation defined value [94].  While structured access is provided for controlling the use of fused mac and for
informing the compiler when IEEE 754 semantics must be followed, other information, such as whether a function
changes the rounding mode, or what flags a function may set, is only provided in comments and not in any language
structure.

Constant expressions setting static variables and initializer lists for unions and arrays are defined to be
unaffected by dynamic modes and to not set the sticky flags.  Therefore, such initializers may be evaluated at
compile time.  If FE_ACESSS is on, all other floating point expressions must be evaluated as if at runtime.

C9X does not add function overloading to C, however, but some of the convenience of overloaded library
functions can be achieved with macros, as shown below [93].

#define fpclassify(x)  (sizeof(x) == sizeof(float))? __feclassifyf(x) :\
 (sizeof(x) == sizeof(double)) ? __feclassifyd(x): \

 __feclassifyl(x)

The math library of C9X includes some specifications for how functions should operate under exceptional
conditions.  However, domain errors are allowed to return implementation defined values and errno  may or may
not be set.  Range errors also may or may not set errno .  Some functions, such as the transcendental, exponential,
and gamma functions may or may not set the inexact flag if the exact result is not representable.  Whether or not the
standard library functions honor different dynamic rounding directions is implementation defined.  The behavior of
the IEEE recommend functions in the C9X library is not fully specified and occasionally contradicts the standard.  It
is not stated if scalb  is sensitive to dynamic rounding modes.  In case the two arguments are equal, the
nextafter  function in C9X returns the second argument instead of the first argument as called for in IEEE 754.
This convention alters the result of nextafter  for some combinations of signed zero inputs.  The C9X logb
follows the IEEE 854 recommendations.

9.3.17. Modula-3
Starting in 1986, Modula-3 was designed to be a successor to Modula-2 suitable for systems programming while
maintaining safety and strong typing.  The IEEE recommended functions as well as functions to control IEEE 754
features are included in the Modula-3 standard library.

Modula-3 does not place constraints on decimal to binary or decimal to binary conversion.  There are three
floating point types, REAL, LONGREAL, and EXTENDED.  A standard interface to find the size of a floating point
type is provided.  In floating point expression evaluation, no implicit promotion occurs, the two operands to an
arithmetic operation must have the same type and the result has the same type as the operands.  The FLOAT function
takes an integer or floating point argument and converts it to the specified floating point type, rounding according to
the current rounding mode.  For converting floating point to integer, functions that round in all four directions are
provided:  FLOOR, CEILING , ROUND, and TRUNC.  A Modula-3 compiler is not free to rearrange computations in a
manner that could affect the result.  For example, floating point addition cannot be regarded as associative [77].

The Modula-3 library supports, but not does mandate, IEEE 754 arithmetic.  For example, besides returning
IEEE 754 rounding modes, the GetRounding  function may also return Vax, IBM370 , or Other .  Functions are
provided to get and set the sticky flags.  The trapping behavior can also be queried and set; if a condition is trapped
on, a Modula-3 exception can be thrown.  The floating point state is preserved across thread switches [77].

9.3.18. RealJava
RealJava [23] is a Java dialect modified to express all the required features of IEEE 754 in a portable manner (sticky
flags are required, but floating point exceptions are not).  RealJava is designed to allow full utilization of the
available floating point hardware, avoiding performance problems caused by Java.

RealJava has many similarities with C9X.  For example, RealJava’s basic floating point types floatN  and
doubleN  are analogous to C9X’s float_t  and double_t .  While RealJava’s binary to decimal conversion is
correctly rounded, the type of unsuffixed floating point literals is doubleN , not double  as in Java.  Therefore,
Java’s compile time range checks on floating point literals are not always performed in RealJava.  Additionally,
RealJava defines decimal to binary to conversion to occur at runtime with no visible side effects (since there are no
side effects, conversions within a loop can be hoisted outside of the loop).  While floatN  and doubleN  are
always IEEE formats, RealJava’s built-in longDouble  type may or may not be an IEEE style format and may or
may not have direct hardware support [23].
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Strict expression evaluation is used by default in RealJava.  By defining a special class variable, a form of
widest available evaluation, called natural evaluation in RealJava, is used in all methods of that class.  A block level
declaration is not provided.  Natural evaluation promotes float  values to floatN  and double  values to
doubleN  [23].  Since the float  and floatN  types may actually both map to the same format on some platforms,
there is no easy method to guarantee an expression is evaluated in higher precision than the input data (of course
explicit casts to a wider type could be added to the expression).

RealJava treats the rounding mode and sticky bits as global variables visible in all methods.  If a method
changes the dynamic rounding mode and does not restore the old value, the new rounding mode is in affect in the
method’s caller.  Library methods are provided to sense and change the rounding mode and sticky flags [23].

9.3.19. Proposal for Extension of Java™ Floating Point Semantics

Except for timing dependencies or other non-determinisms and given sufficient time and sufficient memory
space, a Java program should compute the same result on all machines and in all implementations.

—Preface to The Java™ Language Specification [38]

Since its public release, Java has promised “write once, run anywhere” portability.  For many reasons, both intrinsic
and practical, Java has not achieved its goal of freeing developers from porting their program from one system to
another.  However, by defining the exact sizes of its primitive types and by specifying expression evaluation order,
Java is much more predictable than other contemporary languages such as C and C++.  In a reversal of philosophy,
Sun’s proposal to modify Java’s floating point semantics [91], (abbreviated PEJFPS), destroys Java’s floating point
predictability by allowing the compiler to arbitrarily use or not use extended precision values.

PEJFPS aims to grant limited access to extended precision hardware, where available, and to lessen the
performance impact of an x86 processor strictly conforming to the original Java floating point semantics.  In certain
contexts, PEJFPS allows float  and double  local variables, parameters, and return values to be stored as and
operated on as extended precision floating point numbers.  However, neither arrays nor object fields can use
extended formats.  New class and method qualifiers widefp  and strictfp  control where the new semantics can
be used.  By default, existing Java source code and class  files are subject to the revised semantics, breaking
existing code that depends on Java’s tight floating point specification.

Under PEJFPS, the virtual machine has wide latitude in choosing when and where to use extended
precision.  Even in widefp  contexts on a processor with extended formats, before and after every floating point
operation the virtual machine can promote ordinary floating point values to extended formats and can round
expended values to narrower formats.  This laxity in the proposal sanctions many perverse implementations.  For
example, assigning a float  variable to a double  variable can overflow.  Calls to the same method with the same
arguments can give different results depending on if the method is interpreted or compiled under a JIT.  The
proposal also allows values stored to memory during register spilling to be of a narrower format than the expression
being evaluated.  (On the recent x86 processors, even ignoring reduced memory traffic, the instruction to store a 64
bit double  value executes faster than the instruction to store an 80 bit double extended  value [51].)  Spilling
registers at a reduced width breaks referential transparency.

PEJFPS introduces much needless non-determinism into Java.  The goals of PEJFPS can be met while
preserving Java’s predictability, such as by Borneo’s indigenous  type and anonymous  declarations.  PEJFPS
does not address Java’s other floating point failings, such as lack of support for the IEEE 754-required rounding
modes and sticky flags.

9.3.20. Synopsis
In the past, few languages properly acknowledged issues related to floating point support.  Either details were
overlooked (such as omitting correctly rounded base conversion) or inconsistencies were tolerated (such as allowing
compile-time and runtime base conversion of the same literal to give different values).  FORTRAN has left a legacy
of loosely specified floating point semantics.

Programming languages have been slow to provide support for IEEE 754 floating point and the languages
that do support IEEE 754 floating point have usability problems.  Java mandates IEEE 754 numbers and correctly
rounded base conversions, but Java does not support all of the standard’s required features.  SANE and C9X have
incomplete support for trapping mode; the trapping status can be set, but no portable mechanism is provided to
install or write a trap handler.  While Modula-3 integrates trapping mode into an existing exception mechanism, all
changes to the floating point state are unstructured.  Like SANE, C9X, and RealJava, Modula-3 provides the



124

hardware model of rounding modes, sticky flags, and trapping status:  a single global value inherited and modifiable
by all functions.  C9X has lexically scoped declaration to indicate if IEEE semantics must be followed but lacks
lexically scoped declarations to actually use IEEE features.  Many applications that take advantage of floating point
features use them in a structured manner; therefore, structured control should be supported at the language level.
Borneo maintains Java’s base conversion requirements and mandates use of IEEE 754 while adding new language
declarations to provide structured control over IEEE 754 features.

9.4. IEEE 754 Conformance

Table 42 — IEEE 754 Conformance in Java and Borneo.

Feature Java Borneo
directed rounding explicitly forbidden (JLS §4.2.4) rounding  declarations,

Math.setRound , getRound
sticky flags not supported another attribute of a method’s

signature, library methods to sense
and alter flags, new control structure

floating point exceptions explicitly forbidden (JLS §4.2.4) enable /disable  declarations,
new exception classes

extended formats for primitive
floating point types

only float  and double  are
supported ([15] §5.15.3)

indigenous  maps to double
extended  on machines supporting
that format

non-signaling comparison operators not supported new operators added

fused mac (not part of IEEE 754) not supported library call provided

9.5. New Borneo keywords and textual literals
BorneoKeywordNotInJava:  one of
all enable invalid underflow
anonymous flag none value
disable indigenous overflow waved
divideByZero inexact rounding

BorneoTextualFloatingPointLiteral:  one of
infinity infinityD nanf nann
infinityf infinityn nanF nanN
infinityF infinityN nand
infinityd nanD

9.6. Changes to the Java Grammar

My own good judgment tells me not to try to parse the statement.
—Mike McCurry, White House Press secretary, January 21, 1998

Borneo makes two kinds of changes to the Java grammar: new alternatives for existing Java grammar productions
(JLS §19) and new productions for Borneo features.

9.6.1. Changes for the indigenous  type
Augmented Java Syntax
FloatingPointType: one of

float double indigenous

FloatTypeSuffix: one of
f F d D n N
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9.6.2. New method and constructor declarations

Augmented Java Syntax
ConstructorDeclaration:

Modifiersopt ConstructorDeclarator Throwsopt Admitsopt Yieldsopt ConstructorBody

MethodHeader:
Modifiersopt Type MethodDeclarator Throwsopt Admitsopt Yieldsopt

Modifiersopt void  MethodDeclarator Throwsopt Admitsopt Yieldsopt

New Borneo Productions
Admits:

admits  TrappingConditions

Yields:
yields  TrappingConditions

TrappingConditions:
TrappingCondition
TrappingConditions ,  TrappingCondition

TrappingCondition: one of
overflow underflow divideByZero invalid inexact all none

9.6.3. New Block Declarations

Augmented Java syntax
LocalVariableDeclarationStatement:

FloatingPointRoundingDeclaration ;
FloatingPointTrappingDeclaration ;
AnonymousValueDeclaration ;

New Borneo Productions
FloatingPointRoundingDeclaration:

rounding  Expression

FloatingPointTrappingDeclaration:
enable  TrappingConditions
disable  TrappingConditions

AnonymousValueDeclaration:
anonymous  FloatingPointType

9.6.4. flag-waved  Statement
Augmented Java Syntax
StatementWithoutTrailingSubstatement:

FlagStatement

New Borneo Productions
FlagStatement:

flag  Admitsopt Yieldsopt Block Wavesopt
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Waves:
WaveClause
Waves WaveClause

WaveClause:
waved  TrappingConditions Admitsopt Yieldsopt Block

9.6.5. Operator Overloading
Borneo’s operator overloading introduces many changes to the Java grammar.  The definition of Identifier is
modified to include names such as op+ .  However, these new names can only be used to name and explicitly call
operator methods; they cannot be used as variables or class field names.

Augmented Java Syntax
Modifier: one of

Existing Java Modifer
value

MethodDeclarator:
op  Identifier (FormalParameterListopt)

Identifier:
Existing Java definition of an Identifier
op  concatenated by the text of any of the overloadable operators in Table 13
op  concatenated by a sequence of characters recognized by the regular expressions in Table 16
op[]=

UnaryExpression:
AdditiveOperator UnaryExpression

UnaryExpressionNotPlusMinus:
BitwiseComplementOperator UnaryExpression

MultiplicativeExpression:
MultiplicativeExpression MultiplicativeOperator UnaryExpression

AdditiveExpression:
AdditiveExpression AdditiveOrNovelOperator MultiplicativeExpression

ShiftExpression:
ShiftExpression ShiftOperator AdditiveExpression

RelationalExpression:
RelationalExpression RelationalOperator ShiftExpression

AndExpression:
AndExpression AndOperator EqualityOperator

ExclusiveOrExpression:
ExclusiveOrExpression ExclusiveOrOperator AndExpression

InclusiveOrExpression:
InclusiveOrExpression InclusiveOrOperator ExclusiveOrExpression

New Borneo Productions
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AdditiveOperator:
Any operator matched by the Flex regular expression [+-][`@%^&*_|<>?]+

BitwiseComplementOperator
Any operator matched by the Flex regular expression "~"[`@%^&*_|<>?]+

MultiplicativeOperator
Any operator matched by the Flex regular expression "*"[`@%^&*_|<>?]+

AdditiveOrNovelOperator:
AdditiveOperator
Any operator matched by the Flex regular expression [`@][`@%^&*_|<>?]*

ShiftOperator:
Any operator matched by the Flex regular expression "<<"[`@%^&*_|<>?]+ |
">>"[`@%^&*_|>?][`@%^&*_|<>?]*

RelationalOperator:
Any operator matched by the Flex regular expression '<'[`@%^&*_|>?][`@%^&*_|<>?]* |
'>'[`@%^&*_|>?][`@%^&*_|<>?]* |
"<="[`@%^&*_|<>?]+ |
">="[`@%^&*_|<>?]+

AndOperator:
Any operator matched by the Flex regular expression '&'[`@%^*_|<>?][`@%^&*_|<>?]*

ExclusiveOrOperator:
Any operator matched by the Flex regular expression '^'[`@%^&*_|<>?]+

InclusiveOrOperator:
Any operator matched by the Flex regular expression '|'[`@%^&*_<>?][`@%^&*_|<>?]*
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Hofstadter’s Law:
It always takes longer than you think it will take, even if  you take into account Hofstadter’s Law.

—Douglas R. Hofstadter


