Proposal for Extension of Javaloating Point
Semantics, Revision 1, May 1998

Introduction and Scope

Prompted by feedback from several partners in the industry, Sun is proposing a change
to the specification of floating-point in the Java programming language.

The current Java programming language and virtual machine specifications
require that all single and double precision floating-point calculations must round their
results to the IEEE 754 single and double precision formats, respectively. The intent
of this proposed change is to permit additional floating-point calculations to be done
using IEEE 754 extended precision formats. Informally, extended precision means
precision that is at least as great as that required by Java programming language types.

By making this change, processors that more naturally and efficiently support
extended precision formats and floating-point operations on extended precision for-
mats can deliver better performance for floating-point calculations. Processors that
naturally and efficiently implement IEEE 754 single and double precision operations
as previously mandated by the specifications may continue to do so. In particular, this
proposal does not invalidate théass file format. Any Java virtual machine imple-
mentation that conforms to the current specification conforms to the proposed new
specification.

The proposal affects both the definition of the Java programming languabteein
Java Language Specificatiohy Gosling, Joy, and Steele, and the definition of the
Java virtual machine, iThe Java Virtual Machine Specificatiohy Lindholm and
Yellin. In addition, the proposal implies changes for Java platform compatibility test-
ing and for compilers for the Java programming language.

Summary of Changes in Revision 1 of Proposal

The present document is a first revision to a proposal originally released for licensee
review on March 2, 1998. The changes incorporated in this revision are in response to
feedback gathered during the review and at JavaSoft's March 23, 1998 Licensee Day.
In broad terms, the licensees responding to the original proposal argued that it did
not extend Java floating-point far enough to regain expected performance on common

1

2 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

cases like loops, method invocations, or inlined code. They also demanded continued
access to bit-for-bit write-once-run-anywhere floating-point semantics.

In response to this feedback, two new keywords have been introduced to indicate
whether a class or method is to be treated~Bswide or FP-strict For code that is FP-
wide implementations are permitted, but are not required, to use extended floating-point
formats as described in the IEEE 754 standard. Implementations that use extended float-
ing-point formats are permitted to convert values freely between extended and non-
extended formats, in certain defined contexts. Code that is FP-strict must conform to the
floating-point semantics historically required of all Java programs. Code that is not
declared to be either FP-wide or FP-strict, including legacy code, are interpreted to be
implicitly FP-wide.

Code that is FP-wide and code that is FP-strict may be freely mixed. An FP-wide
method can be invoked from FP-strict code and vice versa; an FP-wide method can over-
ride an FP-strict method and vice versa; and so on.

The revised proposal requires that an implementation provide an FP-strict floating-
point mode. Future floating-point compatibility testing will become increasingly stringent.
Existing implementations that pass current conformance tests but that do not correctly
implement the specifications may fail these more stringent tests. Notes to implementors
targeting Intel Architecture CPUs are provided in this revision to help ensure that imple-
mentations on that platform are conformant.

This revision permits additional use of the extended floating-point formats. Where the
previous proposal only permitted extended floating-point formats to be used for intermedi-
ate values of expressions, this revision also permits values in extended formats to be stored
in local variables and passed as method parameters. Extended formats cannot be used for
fields or array components.

IEEE 754 Floating-point Formats

The IEEE 754 standard defines four different floating-point formats: single, double, single-
extended, and double-extended. Single precision occupies a single 32-bit word, double preci-
sion two consecutive 32-bit words. An extended format offers extra precision and exponent
range over the associated non-extended format. The IEEE standard only specifies a lower
bound on how many extra bits extended precision provides. The details of the IEEE 754
floating-point formats are as specified in the following table:

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 3

Format
Parameter Single Single-extended Double Double-extended
Number of 24 =32 53 = 64
significant bits
Maximum exponent | +127 | =+1023 +1023 | = +16383
Minimum exponent | =126 | < —1022 —1022 | £—16382
Exponent widthin | 8 =11 11 =15
bits
Format width in bits | 32 =43 64 =79

Where applied to the Java programming language or the Java virtual machine in
this document, IEEE 754 single format will be referred tdlaat format and IEEE
754 single-extended format will be referred toflast-extended formato emphasize
the relationship between the format and the Java programming language or Java vir-
tual machine primitive data type. IEEE 754 double and double-extended formats will
be referred to using the IEEE 754 names. To avoid confusion between the data type
and the format of the same name, the data type will always be writtesdin font, as
it is in The Java Language Specificatiand The Java Virtual Machine Specification
Floating-point formats will always be written in normal font.

Proposed Changes to the Java Language Specification

Section 3.9, Keywords

Two keywords are addedi defp andstrictfp. This is an incompatible change in that

any Java program that uses eithédefp or strictfp as an identifier will no longer be
supported. Likewise, any Java program that uses these new keywords will not be sup-
ported by older compilers.

Section 4.2.3, Floating-Point Types and Values

The Java programming language requires every implementation to support two floating-
point formats, called float and double, which are documented in Section 4.2.Beof

4 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Java Language Specificatida be identical to IEEE 754 single and double formats, respec-
tively.

An implementation of the Java programming language may, at its option, support two
additional floating-point formats, called float-extended and double-extended. If it does,
then for that implementation there are specific constants fp, femax, femin, dp, demax, and
demin such that:

fp 232 dp= 64
femax= 1023 demax 16383
femin< —1022 demir€ —16382

These constraints are identical to those specified by IEEE 754 for single-extended and
double-extended formats.

The finite nonzero values of the float-extended format, if it is supported by an imple-
mentation, are of the formm 2%, where s ist1 or—1, m is a positive integer less thaff 2
and e is an integer between femiip+1 and femaxfp+1, inclusive. Values of that form
such that m is positive but less thalt and e is equal to femirfp+1 are said to be denor-
malized.

The finite nonzero values of the double-extended format, if it is supported by an
implementation, are of the formma-2%, where s ist+1 or —1, m is a positive integer less
than 2P, and e is an integer between demdp+1 and demaxdpt1, inclusive. Values of
that form such that m is positive but less thdR and e is equal to demirdpt1 are said to
be denormalized.

Note that the constraints permit the float-extended format to be identical to the double
format or to the double-extended format.

Note that float, float-extended, double, and double-extended are “formats” and not
“types”. The float-extended format may be used instead of float format, and the double-
extended format may be used instead of double format, according to rules described here
and in Chapters 5, 14, and 15.

Every expression, parameter declaration, and local variable declaration is either
explicitly FP-wide explicitly FP-strict orimplicitly FP-wide

Consider an expression, parameter declaration, or local variable decldgatioen
consider the sdb of all class declarations, interface declarations, and method declarations
that contairEt.

If no construct in the sdD bears either theidefp modifier or thestrictfp modifier,
thenE is implicitly FP-wide.

Otherwise, there must be one particular declarationD that bears either thei defp
modifier or thestrictfp modifier and is contained in every other declaratioithat
bears either theidefp modifier or thestrictfp modifier. If d bears thevidefp modifier,

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 5

thenE is explicitly FP-wide; ifd bears thestrictfp modifier, thenkE is explicitly FP-
strict.

An expression, parameter declaration, or local variable declaration that is explic-
itly FP-wide will be treated as FP-wide.

An expression, parameter declaration, or local variable declaration that is explic-
itly FP-strict will be treated as FP-strict.

An expression, parameter declaration, or local variable declaration that is implic-
itly FP-wide is normally treated as FP-wide, but in some programming or execution
environments, it may be that a compiler command switch or a separate tool may be
used to direct that every implicitly FP-wide expression, parameter declaration, and
local variable declaration in a particular class, interface, or compilation unit be treated
as FP-strict.

Less formally but more intuitively, we will refer to classes, methods, or bodies of
code as being treated as FP-wide when all of the expressions, parameter declarations,
or local variable declarations of the class, method or code are treated as FP-wide. Sim-
ilarly, classes, methods, or code may be said to be treated as FP-strict.

Section 5.1.8, Format Conversion

A new kind of conversion is introduced that is not a type conversion, but a conversion
between representations used for the same type.

Within an FP-wide expressiofgrmat conversiomllows an implementation, at its
option, to perform any of the following operations on a value:

* If the value is represented in float format, then the implementation may, at its
option, convert the value from float format to float-extended format. (Note that con-
verting from float format to float-extended format does not alter the mathematical
value represented. In particular, NaNs remain NaNs and infinities remain infini-
ties.)

* If the value is represented in float-extended format, then the implementation may,
at its option, convert the value from float-extended format to float format (round-
ing, if necessary, to the nearest representable value in float format). Alternatively,
the implementation may, at its option, keep the value in float-extended format but
round the value to the nearest representable value in float format (this may also be
regarded as converting the value to float format with rounding and then converting
back to float-extended format).

« If the value is represented in double format, then the implementation may, at its
option, convert the value from double format to double-extended format. (Note that

6 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

converting from double format to double-extended format does not alter the mathemat-
ical value represented. In particular, NaNs remain NaNs and infinities remain infini-
ties.)

« If the value is represented in double-extended format, then the implementation may, at
its option, convert the value from double-extended format to double format (rounding,
if necessary, to the nearest representable value in double format). Alternatively, the
implementation may, at its option, keep the value in double-extended format but round
the value to the nearest representable value in double format (this may also be regarded
as converting the value to double format with rounding and then converting back to
double-extended format).

Within an FP-strict expression, format conversion always converts a value that is repre-
sented in float-extended format to float format (rounding, if necessary, to the nearest repre-
sentable value in float format) and always converts a value that is represented in double-
extended format to double format (rounding, if necessary, to the nearest representable value
in double format). Such conversion is necessary only when the value of a local variable or
method parameter is accessed, the declaration of that local variable or method parameter is
FP-wide, and the implementation has chosen to represent the local variable or method
parameter in an extended format; or when a method is invoked whose declaration is FP-wide
and the implementation has chosen to represent the result of the method invocation in an
extended format.

Format conversion leaves unchanged any value whose type is n€itwar nor dou-
ble.

Section 5.2, Assignment Conversion

If a variable is represented in float-extended format, assignment conversion for that variable
always automatically converts a value to be assigned that is represented in float format to
float-extended format.

If a variable is represented in float format, assignment conversion for that variable
always automatically converts a value to be assigned that is represented in float-extended
format to float format (rounding, if necessary, to the nearest representable value in float
format).

If a variable is represented in double-extended format, assignment conversion for that
variable always automatically converts a value to be assigned that is represented in double
format to double-extended format.

If a variable is represented in double format, assignment conversion for that variable
always automatically converts a value to be assigned that is represented in double-

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 7

extended format to double format (rounding, if necessary, to the nearest representable
value in double format).

Section 5.3, Method Invocation Conversion

If a formal method parameter is represented in float-extended format, method invocation
conversion for that method parameter always automatically converts a value to be passed
as a parameter that is represented in float format to float-extended format.

If a formal method parameter is represented in float format, method invocation
conversion for that method parameter always automatically converts a value to be
passed as a parameter that is represented in float-extended format to float format
(rounding, if necessary, to the nearest representable value in float format).

If a formal method parameter is represented in double-extended format, method
invocation conversion for that method parameter always automatically converts a value
to be passed as a parameter that is represented in double format to double-extended
format.

If a formal method parameter is represented in double format, method invocation
conversion for that method parameter always automatically converts a value to be
passed as a parameter that is represented in double-extended format to double format
(rounding, if necessary, to the nearest representable value in double format).

Section 5.6.1, Unary Numeric Promotion

Unary numeric promotion performs format conversion (section 5.1.8) on the operand.

Section 5.6.2, Binary Numeric Promotion

After performing binary numeric promotion where the two operands are converted to
type float or to type double within an FP-wide expression, format conversion is
applied separately to each operand, but subject to the constraint that the implementation
must make its choices in such a way that the two operands, after format conversion, are
represented in the same format.

Section 8.1.2, Class Modifiers

A ClassModifiermay be eithewidefp or strictfp. A compile-time error occurs if
bothwidefp andstrictfp appear as class modifiers in the same class declaration.

8 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Section 8.3, Field Declarations

A field of type f1oat is always represented in float format. A field of tygeuble is always
represented in double format. It is not permitted to represent a field in float-extended format
or double-extended format.

Section 8.4.1, Formal Parameters

A method parameter of typ€loat is always represented in float format if its declaration is
FP-strict. A method parameter of tyfigdoat may be represented in float format or in float-
extended format, at the option of the implementation, if its declaration is FP-wide.

A method parameter of typgouble is always represented in double format if its dec-
laration is FP-strict. A method parameter of tyjaib1e may be represented in double for-
mat or in double-extended format, at the option of the implementation, if its declaration is
FP-wide.

Section 8.4.3, Method Modifiers

A MethodModifiermay be eithewidefp or strictfp. A compile-time error occurs if both
widefp andstrictfp appear as method modifiers in the same method declaration.

Section 8.3.3, Constructor Modifiers

A ConstructorModifiermay not be widefp or strictfp. A compile-time error occurs if
eitherwidefp or strictfp appears as a constructor modifier. This difference between a
ConstructorModifierand aViethodModifieris intentional.

Section 8.4.6.1, Overriding (By Instance Methods)

The presence or absencewdtlefp andstrictfp maodifiers has no effect whatsoever on the
rules for overriding methods and implementing abstract methods.

Section 9.1.2, Interface Modifiers

An InterfaceModifiermay be eithewidefp or strictfp. A compile-time error occurs if
bothwidefp andstrictfp appear as interface modifiers in the same interface declaration.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 9

Section 10.1, Array Types

An array component of typEloat is always represented in float format. An array com-
ponent of typaloube is always represented in double format. It is not permitted to rep-
resent an array component in float-extended format or double-extended format.

Section 14.3, Local Variable Declaration Statements

A local variable of typefloat is always represented in float format if its declaration is
FP-strict. A local variable of typ€loat may be represented in float format or in float-
extended format, at the option of the implementation, if its declaration is FP-wide.

A local variable of typedoube is always represented in double format if its decla-
ration is FP-strict. A local variable of typgbuble may be represented in double for-
mat or in double-extended format, at the option of the implementation, if its
declaration is FP-wide.

Section 15.1, Evaluation, Denotation, and Result

Format conversion (section 5.1.8) is applied to the resultvefyexpression that pro-
duces a value.

Section 15.2, Variables as Values

If an expression denotes a variable, and a value is required for use in further evaluation,
then the result of applying format conversion to the value of that variable is used.

Section 15.6, Evaluation Order

The rules for evaluation order are not changed.

Section 15.7.1, Literals

The value of a literal of typéloat is always represented in float format. The value of a
literal of typedouble is always represented in double format.

Section 15.7.3, Parenthesized Expressions

Parentheses do not affect in any way the choice of format for the value of an expression.

10 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Section 15.10, Field Access Expressions

The format conversion rule of section 15.2 applies to field access expressions.

Section 15.11, Method Invocation Expressions

Method invocation conversion (section 5.3) addresses format conversions for the values of
argument expressions.

The fact that format conversion is applied to the result of every expression that returns
a value (section 15.1) implies that when an FP-wide method is invoked from FP-strict
code, if the value returned by the method is in an extended format, then the value must be
converted to the corresponding non-extended format.

Section 15.12, Array Access Expressions

The format conversion rule of section 15.2 applies to array access expressions.

Sections 15.13.2, 15.13.3, 15.14.1, 15.14.2, Prefix and Postfix Operators

FP-wide prefix and postfix increment and decrement expressions behave with respect to for-
mat decisions exactly as if the expression had been writtesasl or x=x-1 plus a vari-
able access.

Section 15.14.4, Unary Minus Operator

If, after unary numeric promotion, the operand is represented in float-extended format or
double-extended format, then the unary negation operation is carried out in that format and
the result is represented in that format. That result is then subject to further format conver-
sion, by the general rule of section 15.1.

Section 15.15, Cast Expressions

A cast may convert a value of one numeric type to a similar value of a floating-point type, but

it needs not have an effect on the choice of format for the result of the cast expression. Con-
sequently, an FP-wide cast to typtoat does not necessarily cause its value to be rounded

to the nearest representable value in float format, and an FP-wide cast tmiyde does

not necessarily cause its value to be rounded to the nearest representable value in double
format.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 11

Section 15.16, Multiplicative Operators

If, after binary numeric promotion, the operands are represented in float-extended for-
mat or double-extended format, then the multiplication, division, or remainder operation
is carried out in that format and the result is represented in that format. That result is then
subject to further format conversion, by the general rule of section 15.1.

Section 15.17.2, Additive Operators{ and -) for Numeric Types

If, after binary numeric promotion, the operands are represented in float-extended for-
mat or double-extended format, then the addition or subtraction operation is carried out
in that format and the result is represented in that format. That result is then subject to
further format conversion, by the general rule of section 15.1.

Section 15.19, Relational Operators

If, after binary numeric promotion, the operands are represented in float-extended for-
mat or double-extended format, then the comparison is carried out in that format.

Section 15.20.1, Numerical Equality Operators= and !=

If, after binary numeric promotion, the operands are represented in float-extended for-
mat or double-extended format, then the equality test is carried out in that format.

Section 15.24, Conditional Operator? :

If, after binary numeric promotion, the second and third operands are represented in
float-extended format or double-extended format, then the result is represented in that
format. That result is then subject to further format conversion, by the general rule of
section 15.1.

Sections 15.25.1, 15.25.2 Simple and Compound Assignment Operators

Assignment conversion (section 5.2) addresses format conversions for values that are to
be assigned to variables.

Section 15.27, Constant Expression

A compile-time constant expression is always treated as though FP-strict.

12 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Section 20.9, The Clasgava.lang.Float
public static final int WIDEFP_MAX_EXPONENT;

The constant value of this field is the largest exponent that can be represented in float-
extended format. If the implementation does not use float-extended format, the constant
value is +127. Otherwise, the constant value is femax as defined by Section 4.2.3.

public static final int WIDEFP_MIN_EXPONENT;

The constant value of this field is the smallest exponent that can be represented in float-
extended format. If the implementation does not use float-extended format, the constant
value is—126. Otherwise, the constant value is femin as defined by Section 4.2.3.

public static final int WIDEFP_SIGNIFICAND_BITS;

The constant value of this field is the number of bits of significand that can be represented in
float-extended format. If the implementation does not use float-extended format, the constant
value is 24. Otherwise, the constant value is fp, where fp is defined by Section 4.2.3.

Section 20.10, The Clasgava.lang.Double
public static final int WIDEFP_MAX_EXPONENT;

The constant value of this field is the largest exponent that can be represented in double-
extended format. If the implementation does not use double-extended format, the constant
value is 1023. Otherwise, the constant value is demax as defined by Section 4.2.3.

public static final int WIDEFP_MIN_EXPONENT;

The constant value of this field is the smallest exponent that can be represented in double-
extended format. If the implementation does not use double-extended format, the constant
value is—1022. Otherwise, the constant value is demin as defined by Section 4.2.3.

pubTlic static final int WIDEFP_SIGNIFICAND_BITS;

The constant value of this field is the number of bits of exponent that can be represented in
double-extended format. If the implementation does not use float-extended format, the con-
stant value is 53. Otherwise, the constant value is dp, where dp is defined by Section 4.2.3.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 13

Proposed Changes to the Java Virtual Machine Specification

Chapter 2, Java Concepts

Changes must be made to this chapter tracking the changes to be riiheelava Lan-
guage Specificatiorsketched above.

Section 3.2.2, Floating-Point Types and Values

The Java Virtual Machine Specificatioaquires that every implementation support two
floating-point formats, called float and double, which are documented in Section 3.2.2 to
be identical to IEEE 754 single and double formats, respectively.

An implementation of the Java virtual machine may, at its option, support two
additional floating-point formats, called float-extended and double-extended. If it
does, the definition of these additional formats is identical to that given in Section
4.2.3 of Proposed Changes to the Java Language Specification, above.

Note that float, float-extended, double, and double-extended are “formats” and not
Java virtual machine “types”. The float-extended format may be used instead of float
format, and the double-extended format may be used instead of double format,
according to rules described in Chapters 3 and Bhaf Java Virtual Machine Specifi-
cation

Every Java virtual machine instruction, local variable, or operand stack is either
explicitly FP-wide, explicitly FP-strict, implicitly FP-wide, or implicitly FP-strict
depending on the settings of theCC_STRICT and ACC_EXPLICIT bits of the
access_flags word of the method_info structure containing the instruction or
defining the method that allocates the local variable or operand stack (see Section 4.6,
Methods).

The encoding of floating-point modes in flag bit settings is as given in the follow-
ing table:

Floating-point Mode | ACC_STRICT Flag | ACC_EXPLICIT Flag

explicitly FP-wide unset set
explicitly FP-strict set set
implicitly FP-wide unset unset

implicitly FP-strict set unset

14 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Note that this mapping implies that Java virtual machine instructions in, or local vari-
ables or operand stacks allocated by, code compiled by a Java compiler that predates the
proposed changes are implicitly FP-wide.

No means is provided to declare a method implicitly FP-strict in source code. That
floating-point mode can only be produced by a tool such@kaas file postprocessor or a
user-defined class loader.

A Java virtual machine instruction, local variable, or operand stack that is either
explicitly FP-wide or implicitly FP-wide will be treated as FP-wide.

A Java virtual machine instruction, local variable, or operand stack that is either
explicitly FP-strict or implicitly FP-strict will be treated as FP-strict.

Less formally but more intuitively, we will refer to classes, methods, or bodies of code
as being treated as FP-wide when all of the Java virtual machine instructions contained in,
and local variables and operand stacks allocated by, the classes, methods, or bodies of
code are treated as FP-wide. Similarly, classes, methods, or bodies of code may be said to
be treated as FP-strict.

Section 3.4, Words

This section will be deleted. The current definitions of the Java virtual machine’s local vari-
ables and operand stacks are in terms of an abstract word with an implementation-defined
size. Such definitions are inconvenient if floating-point values using float-extended or dou-
ble-extended formats may be stored in local variables or on an operand stack.

The proposed new specification defines local variables and operand stacks more
abstractly than in the original specification, in terms of values rather than words.

Section 3.6.1, Local Variables

On each method invocation, the Java virtual machine allocates a Java frame which contains
an array known as its local variables. A local variable can hold a value of any Java virtual
machine data type, including a value of tyjang or of typedouble. Values of typefloat
may be stored in a local variable in float format or, if the local variable is FP-wide, float-
extended format. Values of typluble may be stored in a local variable in double format
or, if the local variable is FP-wide, double-extended format.

Individual local variables are addressed by indexing into the local variables array. Two
consecutive local variable indices are reserved for each value ofligpe or double.
Such a local variable is only addressed using the lesser index for the value.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 15

For example, a local variable of typmuble reserves both indices andn+1,
although it can only be addressed using indeXhe Java virtual machine specifica-
tion does not require to be even and does not require alignment of local variables.

Section 3.6.2, Operand Stacks

On each method invocation the Java virtual machine allocates a Java frame which con-
tains an operand stack. Most Java virtual machine instructions take values from the oper-
and stack of the current frame, operate on them, and return results to that same operand
stack. The operand stack is also used to pass arguments to methods and to receive
method results.

Each entry on the operand stack can hold a value of any Java virtual machine data
type, including a value of typgong or of typedoubTe. Values of typefloat may be
represented in float or, if the operand stack is FP-wide, float-extended format. Values of
type double may be represented in double or, if the operand stack is FP-wide, double-
extended format. The Java virtual machine specification does not require alignment of
values on the operand stack.

Values from the operand stack must be operated upon in ways appropriate to their
types. It is incorrect, for example, to push two values of type and then treat them
as a value of typéong, or to push two values of typEloat and then add them with
an iadd instruction. A small number of Java virtual machine instructions ¢the
instructions andwap) operate on runtime data areas without regard to the specific
types of values; these instructions must not be used to break up or rearrange the words
of values. These restrictions on operand stack manipulation are enforced through
class file verification.

Section 4.3.3, Method Descriptors

A method descriptor is valid only if it represents method parameters with a total length
of 255 or less, where that length includes the contributiontfois in the case of
instance method invocations. The total length is calculated by summing the lengths of
the individual parameters, and the lengthtof s if appropriate, where an item of type
Tong or doubTe contributes two units to the length and a value of any other type con-
tributes one unit.

16 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Section 4.4.4CONSTANT_Integer and CONSTANT_Float

Floating-point values stored TONSTANT_Float_info structures may only be represented
using float format; values may not be represented using float-extended format.

Section 4.4 . 5CONSTANT_Long and CONSTANT_Double

Floating-point values stored @ONSTANT_Doub1e_info structures may only be represented
using double format; values may not be represented using double-extended format.

Section 4.6, Methods

Table 4.4, showing theccess_fTags modifiers of thenethod_info structure, defines two
additional modifier bits:

Flag Name Value Meaning Used By

ACC_STRICT 0x0800 Floating-point mode is FP-strict Any method
if set, is FP-wide if unset.

ACC_EXPLICIT | 0x1000 Floating-point mode was specit Any method
fied in the source code.

Section 4.7.4Code Attribute

The value of thenax_stack item gives the maximum depth of the operand stack at any point
during execution of this method, where a value of typeg or doub1e contributes two units
to the depth and a value of any other type contributes one unit.

The value of themnax_locals item gives the number of local variable array indices
reserved for local variables used by this method, including the parameters passed in the
local variable array to the method on invocation. The index of the first local variable is
The greatest local variable index for a value of tyjpeg or double isnax_Tocals—2; the
greatest local variable index for a value of any other Java virtual machine type is
max_locals—1.

Note that the proposed definition of tihex_stack item may not be immediately use-
ful to implementations which do not implement a fixed-width operand stack, for instance
when determining where to push a stack frame. Naive implementations that cannot use
max_stack directly can choose a conservative maximum stack size baseaxos tack,
or alternatively could calculate a more precise stack size using information derived during
processing such as verification.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 17

Similarly, the proposed definition of theax_Tocals item may not be immedi-
ately useful to implementations which do not implement local variables as a fixed-
width array, for instance when determining the size of a Java frame.

Section 4.7.7LocalVariableTable Attribute

The sentence “If the local variable #tdex is a two-word type double or Tong), it
occupies both ndex andindex+1" will be deleted. It is currently found in the descrip-
tion of theindex item of an entry in thdocal_variable_table array of theLocal-
VariableTable attribute.

Section 4.8.1, Static Constraints

The four constraints on the index operand of the Java virtual machine local vdsable
instructions still stand in the new proposal.

Section 4.8.2, Structural Constraints

The structural constraints on the code array rely on the abstract types of values on the
operand stack, not on the format in which those values are literally stored. Constraints
on a value of typefloat will hold whether the value is represented in float format or
float-extended format. Constraints on a value of tgo@ble will hold whether the
value is represented in double format or double-extended format.

The following four structural constraints, currently given in Section 4.8.2huf
Java Virtual Machine Specificatiorare affected by the change to a value-oriented
operand stack:

» At no point during execution can the order of the words of a two-word typed
or double) be reversed or split up. At no point can the words of a two-word type
be operated on individually.

* No local variable (or local variable pair, in the case of a two-word type) can be
accessed before it is assigned a value.

» At no point during execution can the operand stack grow to contain more than
max_stack words.

» At no point during execution can more words be popped from the operand stack
than it contains.

18 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

The first of these constraints can be deleted. The new definition of the operand stack
only permits values on the operand stack to be loaded and stored in their entirety. The sec-
ond constraint can have the phrase “or local variable pair, in the case of a two-word type”
deleted. The new definition of a local variable does not permit portions of a local variable
to be addressed.

The third constraint can be restated as follows:

* At no point during execution can the operand stack grow to a depth greater than that
implied by themax_stack item, where a value of typkong or doub1e contributes two
units to the depth and a value of any other type contributes one unit.

The fourth constraint can be trivially restated:

< At no point during execution can more values be popped from the operand stack than
it contains.

Finally, the following constraint on the operand stack can be retained unchanged
where the notion of operand stack size is understood to reflect the number of values on the
operand stack rather than the number of words:

* Where an instruction can be executed along several different execution paths, the oper-
and stack must have the same size prior to the execution of the instruction, regardless
of the path taken

Section 4.9.3, Long Integers and Doubles

Values of typedong anddoubTe are treated specially by the verification process.

Whenever a value of typgong or double is moved into a local variable addressed
using indexn, the indexn+1 is specially marked to indicate that all references to the value
of typeTong or double must be through the previous index

Whenever a value is moved to a local variabJehe preceding local variable—1 is
examined to see if it is the index of a value of typeng or doubTe. If so, that preceding
local variable index is changed to indicate that it now contains an unusable value.

Dealing with values of typ@&ong or double on the operand stack is simpler; the veri-
fier treats them as single units on the stack. For example, the verification code dadthe
instruction (add two values of typub1e) checks that the top two values on the operand
stack are both of typeouble. When calculating operand stack length, values of types
Tong anddouble each represent a single value.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 19

Section 4.10, Limitations of the Java Virtual Machine andt1ass File Format

The greatest index into the local variables array in a method is limited to 65534 by the
size of themax_locals item of theClassFile structure. Recall that values of types
Tong anddouble are considered to reserve two local variable indices.

Section 5.1, The Runtime Constant Pool (in JVMS First Revision only)

Runtime constant values derived fromCONSTANT_Float_info and
CONSTANT_Double_info structures in the binary representation of a class or interface
are always represented in float and double format, respectively, and cannot be repre-
sented in an extended format.

Chapter 6, Java Virtual Machine Instruction Set

The definition of each Java virtual machine instruction includes one or more “stack dia-
grams” that indicate the effect of the instruction on the operand stack. These diagrams
are currently written in terms of abstract words, where each value on the operand stack
consists of one or two words. The change from a word-oriented to a value-oriented oper-
and stack requires that this word orientation be removed from the stack diagrams and
associated text, including Section 6.4 where stack diagrams are first introduced and in
descriptions of some instructions that do not operate on values of floating-point types.

Note that many Java virtual machine instructions are permitted to behave differ-
ently depending on whether they are treated as FP-wide or FP-strict.

Format Conversion

The format conversions introduced for the Java programming language in section 5.1.8
are reflected in the definition of the Java virtual machine. A format conversion is not a
type conversion, but a conversion between representations used for the same type.

During the execution of an FP-wide Java virtual machine instruction, format con-
version allows an implementation, at its option, to perform any of the following oper-
ations on a value:

« If the value is represented in float format, then the implementation may, at its
option, convert the value from float format to float-extended format. (Note that con-
verting from float format to float-extended format does not alter the mathematical

20 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

value represented. In particular, NaNs remain NaNs and infinities remain infinities.)

« If the value is represented in float-extended format, then the implementation may, at its
option, convert the value from float-extended format to float format (rounding, if nec-
essary, to the nearest representable value in float format). Alternatively, the implemen-
tation may, at its option, keep the value in float-extended format but round the value to
the nearest representable value in float format (this may also be regarded as converting
the value to float format with rounding and then converting back to float-extended for-
mat).

« If the value is represented in double format, then the implementation may, at its option,
convert the value from double format to double-extended format. (Note that converting
from double format to double-extended format does not alter the mathematical value
represented. In particular, NaNs remain NaNs and infinities remain infinities.)

« If the value is represented in double-extended format, then the implementation may, at
its option, convert the value from double-extended format to double format (rounding,
if necessary, to the nearest representable value in double format). Alternatively, the
implementation may, at its option, keep the value in double-extended format but round
the value to the nearest representable value in double format (this may also be regarded
as converting the value to double format with rounding and then converting back to
double-extended format).

In addition, upon the execution of an FP-wide Java virtual machine instruction that
implements a store into an FP-strict local variable or a push onto an FP-strict operand
stack, format conversion always converts a value that is represented in float-extended for-
mat to float format (rounding, if necessary, to the nearest representable value in float for-
mat) and always converts a value that is represented in double-extended format to double
format (rounding, if necessary, to the nearest representable value in double format). Such
conversion is necessary only when the value is stored to a local variable that is FP-strict,
and the implementation has chosen to represent the value in an extended format; or when
an FP-strict method has invoked an FP-wide method and the implementation has chosen to
represent the result of the method invocation, to be pushed onto the FP-strict operand stack
of the invoker, in an extended format.

Upon the execution of an FP-strict Java virtual machine instruction, format conversion
always converts an operand value that is represented in float-extended format to float format
(rounding, if necessary, to the nearest representable value in float format) and always con-
verts a value that is represented in double-extended format to double format (rounding, if
necessary, to the nearest representable value in double format). Such conversion is necessary

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 21

only when the value of a local variable is accessed, the local variable is FP-wide, and the
implementation has chosen to represent the local variable in an extended format.

Note that the Java virtual machine’s definition of format conversion is not identi-
cal to that for the Java programming language: the Java virtual machine’s definition
does not provide a catchall case for types other thiesat and double. While the
catchall case is a useful convenience when describing the Java programming lan-
guage, it would obscure the presentation of the Java virtual machine by increasing the
number of Java virtual machine instructions subject to format conversion.

Load and Store Instructions

Execution of a Java virtual machine instruction implementing a load of a value of type
float or double from a local variable onto the operand stack performs format conver-
sion on the operand value before the value is loaded. The affected instructions are
fload, fload_<n>, dload, anddload_<n>.

Execution of a Java virtual machine instruction implementing a load of a constant
value of typefloat or double onto the operand stack performs format conversion on
the constant value before the value is loaded. The affected instructioftsraste <f>,
dconst_<d>, and anyldc, Idc_w, orldc2_w instruction with an operand representing a
float or double constant.

Execution of a Java virtual machine instruction implementing a store of an oper-
and of typefloat or double from the operand stack into a local variable performs
format conversion on the operand value before the value is stored. The affected
instructions ardstore, fstore_<n>, dstore anddstore_<n>.

Arithmetic Instructions

Execution of a Java virtual machine instruction implementing a unary arithmetic opera-
tion on an operand of typ€loat or double first performs format conversion on its
operand value. The affected instructionsfaeg anddneg.

Execution of a Java virtual machine instruction implementing a binary arithmetic
operation on two values of typ@oat or on two values of typdoub1e first performs
format conversion separately on its operand values, but subject to the additional con-
straint that the implementation must make its choices in such a way that the two oper-
ands, after format conversion, are represented in the same format. The affected
instructions ardadd, fsub, fmul, fdiv, frem, dadd, dsub, dmul, ddiv, anddrem.

Execution of a Java virtual machine instruction implementing an operation on one
or more values of a floating-point type, having performed format conversion on the

22 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

operand as permitted by the above rules, operates on the operand or operands exactly as
specified by IEEE 754 for that operation and operand format. That is, the result must be
computed exactly and then rounded to the nearest value of the operand format using round
to even.

Execution of an Java virtual machine arithmetic instruction that produces a result which
is a value of typefloat or double performs format conversion on its result value prior to
pushing it onto the operand stack. The affected instructionBegefadd, fsub, fmul, fdiv,
frem, dneg, dadd, dsub, dmul, ddiv, anddrem.

Type Conversion Instructions

Execution of a Java virtual machine type conversion instruction that operates on an operand
of typefloat or double performs format conversion on the operand value prior to perform-
ing the type conversion. The affected instructionsiré?l, f2d, d2i, d2l, andd2f.

Execution of a Java virtual machine type conversion instruction taking an operand of a
floating-point type or producing a result of a floating-point type must, after any permitted
format conversion on the operand value, convert between types exactly as specified by
IEEE 754 for that conversion and operand format.

Execution of a Java virtual machine type conversion instruction that produces a result
value of typefloat or double performs format conversion on the result value prior to
pushing it onto the operand stack. The affected instruction®§rl2f, d2f, i2d, 12d, and
f2d.

Object and Array Manipulation Instructions

Execution of a Java virtual machine instruction implementing a load of a value of type
float or double from an array component, instance variable, or clasatic) variable

onto the operand stack performs format conversion on the value before it is loaded. The
affected instructions artaload, daload, and getfield and getstatic where the referenced

field is of typefloat ordouble.

Execution of a Java virtual machine instruction implementing a store of an operand of
type float that is represented in float-extended format always converts the operand value
to float format before it is stored.

Execution of a Java virtual machine instruction implementing a store of an operand of
type doubTle that is represented in double-extended format always converts the operand
value to double format before it is stored.

The affected instructions afeload, daload, andputfield andputstatic where the refer-
enced field is of typ€loat or double.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 23

Comparison Instructions

Execution of a Java virtual machine instruction implementing a comparison operation
on two values of typ&loat or on two values of typdoub1e first performs format con-
version separately on its operand values, but subject to the additional constraint that
the implementation must make its choices in such a way that the two operands, after
format conversion, are represented in the same format. The affected instructions are
fcmpl, fcmpg, dempl, anddcmpg.

Method Invocation Instructions

On every FP-wide execution of a Java virtual machine method invocation instruction,
the operand stack must contaiargs values which are to be passed to the invoked
method as local variables in the stack frame of the invoked method. The number of argu-
ment values and the type and order of the values must be consistent with the descriptor
of the resolved method.

Each invocation of a nonative method creates a new stack frame for the
method being invoked. Two cases must be considered:

« Ifthisis a class{tatic) method invocation, theargs argument values are popped
from the operand stack. Format conversion is performed on each argument value
of type float or typedouble, then the argument values are stored into the first
nargs local variables of the new stack frame, with the first argument value in local
variable 0, the second argument value in local variable 1, and so on.

* If this is not a class method invocation, thargs argument values arubjectref are
popped from the operand stack. Format conversion is performed on each argument
value of typefloat or typedouble, then theobjectref and argument values are
stored into the firshargs+1 local variables of the new stack frame, witijectref
in local variable 0, the first argument value in local variable 1, and so on.

The invokeinterface instruction has amargs operand (callecount in the first
revision ofThe Java Virtual Machine Specification) which is currently used to specify
the number of words of arguments to be found on the operand stackolihieoper-
and and its interpretation are retained for compatibility. Thent operand is an
unsigned byte which must not be zero. Tdoent value must be consistent with the
descriptor of the resolved interface method, where each method descriptor parameter
of type Tong or double contributes two units to theount value, and each method
descriptor parameter of any other type contributes one unit.

24 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

Note that implementations that use extended floating-point formats may have diffi-
culty usingcount to derive the number of argument values to be pushed for the interface
method invocation. This information may be derived from the interface method descriptor.

The Java virtual machine method invocation instructionsrarekeinterface, invokespe-
cial, invokestatic, andinvokevirtual.

Return Instructions

Execution of a Java virtual machine instruction implementing a return operation on a return
value of typefloat or doubTe first performs format conversion on the return value. The
affected instructions afesturn anddreturn.

Operand Stack Management Instructions

Java virtual machine instructions that manipulate untyped data on the operand stack (e.g.
dup, pop2, swap) will be defined in terms of values rather than words. These instructions
will be interpreted depending on the format used to represent the value they operate on, but
not the type of those values. Some of these instructions can operate on values that may be in
any one of several forms, and will behave in different ways depending on the forms of their
operands. Each alternative behavior will be represented by a separate stack diagram in the
instruction definition. For instance thgp2 instruction will have two stack diagrams; the
dup2_x2 instruction will have four stack diagrams.

For the purposes of defining this class of instructions we will separate the possible for-
mats of operands into two classes. Values represented using the floating-point formats
float-extended, double, double-extended, as well as values of the integralotygewill
be called “format class 2". Values of other typésdlean, byte, char, short, int, and
float values represented using float format), which will be called “format class 1".

The instructions to be defined in this way, and the stack diagrams they will support,
include:

dup2
Stack ...value2, valuel []
..., value2, valuel, value2, valuel
wherevaluel andvalue2 are of format class 1
OR

Stack ...value [
..., value, value

wherevalue is of format class 2

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 25

dup2_x1
Stack

OR
Stack

dup2_x2
Stack

OR
Stack

OR
Stack

OR
Stack

dup_x2
Stack

OR
Stack

...value3, value2, valuel [
..., value2, valuel, value3, value2, valuel

where valuel, value2, and value3 are of format class 1

...value2, valuel [J
..., valuel, value2, valuel

wherevaluel is of format class 2 andilue? is of format class 1

...value4, value3, value2, valuel [
...,value2, valuel, value4, value3, value2, valuel

wherevaluel, value2, value3, andvalue4 are of format class 1

...value3, value2, valuel []
..., valuel, value3, value2, valuel

wherevaluel is of format class 2 andilue2 andvalue3 are of
format class 1

...value3, value2, valuel []
...,value2, valuel, value3, value2, valuel

wherevalue3 is of format class 2 andgiluel andvalue2 are of
format class 1

...value2, valuel [J
..., valuel, value2, valuel

wherevaluel andvalue2 are of format class 2

...value3, value2, valuel []
...,valuel, value3, value2, valuel

wherevaluel, value2, andvalue3 are of format class 1

...value2, valuel []
..., valuel, value2, valuel

wherevalue? is of format class 2 anghluel is of format class 1

26 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

pop2
Stack ...value2, valuel [

wherevalue2 andvalue2 are of format class 1
OR
Stack ...value [

wherevalue? is of format class 2

The following operand stack manipulation instructions are currently defined in terms
of one word on the operand and need to be trivially modified to operate on one value
instead. Each will have a single stack diagram:

dup
Stack ...value U
..., value, value
wherevalue is of format class 1
dup_x1
Stack ...value2, valuel []
..., valuel, value2, valuel
wherevaluel andvalue2 are of format class 1
pop
Stack ...value [
wherevalue is of format class 1
swap

Stack ...value2, valuel [
..., valuel, value2

wherevaluel and value2 are of format class 1

Chapter 7, Compiling for the Java Virtual Machine

This chapter requires minor changes to correct operand stack word orientation, e.g. on pp.
343-344 of the first printing.

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 27

Chapter 9, An Optimization

The definitions of the implementation-specifiguick instructions will be modified to be
consistent with the Java virtual machine instruction set. The changes are not detailed in
this proposal.

Implications for Compilers and Tools

Although the Java programming language permits classes as well as methods to be
declared using theidefp or strictfp modifiers, theclass file format only provides
facilities to specify the floating-point mode of individual methods. Compilers for the
Java programming language must propagate an explicitly specified floating-point mode
from a class declaration to each method defined in that class unless the declaration of the
method itself explicitly specifies a floating-point mode.

Compilers for the Java programming language must flag each method that has
been declared to be FP-wide or FP-strict, whether the declaration was made for the
specific method or for the class containing the method and propagated to the method.
They do this by setting thaCC_EXPLICIT bit of the access_flags item of the
method_info structure for each method with an explicitly declared floating-point
mode, and leaving it cleared otherwise.

If a method is explicitly declared to be FP-wide, whether in its declaration or in
the declaration of its class, or if no floating-point mode is explicitly declared for the
method or its class, then a compiler must clear AlG€_STRICT bit and set the
ACC_EXPLICIT bit of the access_flags item of themethod_info structure of that
method. If a method is explicitly declared to be FP-strict, whether in its declaration or
in the declaration of its class, then a compiler must settte STRICT bit and the
ACC_EXPLICIT of the access_flags item of themethod_info structure of that
method.

The floating-point mode of a class is used as the floating-point mode of its class
initialization and instance initialization methods. The floating-point mode of construc-
tors, static initializers, and instance initializers may not be set individually.

Constant expressions should always be treated as FP-strict. Compilers themselves
implemented in the Java programming language must take care that the possible use
of extended precision by the host Java platform on which the compiler is run does not
cause compile-time constant expressions to be evaluated using extended formats.

Compilers and static optimizers must not inline if doing so would reduce the con-
straints on rounding mandated by the virtual machine specification. The constraints
that apply to a given situation will vary depending on the floating-point mode in effect.

28 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS

For example, a method declared usingwthdefp modifier such as
widefp private double add(double a, double b) { return a + b; }

could normally be inlined using a sindi&ld instruction. However, a variant of that method
declared using thetrictfp modifier cannot be trivially inlined:

strictfp private double add(double a, double b) { return a + b; }

Because the specification requires rounding of the method arguments, a compiler wishing to
inline this method may have to insert additional instructions to make the inlining conform-
ant.

Other compiler optimizations such as forward substitution may require similar intro-
duction of additional instructions to make the optimization conformant.

Tools such as class-to-class transformers and user-defined class loaders may be
defined to change the effective floating-point mode of implicitly FP-strict classes to FP-
wide or implicitly FP-wide classes to FP-strict. Such tools may be useful for legacy classes
where source is not available and you find different results on different platforms. Alterna-
tively, you may wish to use such tools to convert classes to be FP-wide in order to detect
numerically unstable algorithms.

Such tools should only modify thaCC_STRICT flag value of methods whose
ACC_EXPLICIT bit is not set. Methods whoge€C_EXPLICIT bit is set should not be mod-
ified by such tools; these methods have declared a specific floating-point mode and may
not operate properly if that declaration is not respected.

Neither the Java language specification nor the Java virtual machine specification
mandates a tool or procedure to change the effective floating-point mode of implicitly FP-
wide or implicitly FP-strict classes.

Alternatives for Java Virtual Machine Implementors

The proposed changes to the Java programming language and virtual machine specifications
do not invalidate a currently conforming Java virtual machine implementation; any imple-
mentation conforming to the existing specification conforms to the proposed new specifica-
tion. However, implementors targeting processors that can benefit by the proposed
extensions may wish to modify their Java virtual machine implementations to take advantage
of those extensions to provide better performance or increased precision.

A given implementation is free to offer alternatives, within the confines of the specifi-
cations. On platforms that naturally support floating-point calculations using IEEE 754
extended formats, the most likely implementation choices will be between using extended

PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS 29

formats in the permitted contexts and exclusively using the more restrictive formats of
earlier Java programming language and virtual machine specifications. The first
choice is likely to yield improved speed for floating-point calculations. The second
should guarantee identical results across a wider range of contemporary and future
implementations and backwards compatibility with older implementations.

An implementation that supports floating-point calculations using extended for-
mats may provide variants of that support. For instance, an implementation may let
the user select whether to use float-extended format, double-extended format, or both.
An implementation may also let the user select details about the extended formats to
use, within the ranges permitted by IEEE 754.

Where an implementation provides a choice between alternative permitted behav-
iors, those behaviors must be chosen on Java virtual machine startup using an imple-
mentation-specific mechanism such as a command line flag.

Implications for Testing

The proposed changes have implications on Java platform compatibility testing. In par-
ticular, some small number of current tests that test for the original Java programming
language floating-point behavior may be invalidated. A new suite of tests for floating-
point conformance will be written. These tests will be written in such a way as to verify
conformance of implementations that produce results within the range of values permit-
ted by the extended Java programming language specification when running FP-wide
code. Such tests would of course verify conformance of an implementation that chooses
to treat FP-wide code as FP-strict.

In addition, tests verifying conformance of implementations when running FP-
strict code will be written, and will require bit-for-bit compatibility for all implemen-
tations for such code. Note that such tests are likely to be more stringent than those
performed in current compatibility testing; hence, an implementation that passes cur-
rent floating-point compatibility tests, but does not exactly implement the Java pro-
gramming language and virtual machine specifications for floating-point, may not
pass the improved test suites.

A given implementation that may be run in several modes offering alternative
floating-point semantics will be required to conform to the specification in all avail-
able floating-point modes. The proposed extended specification limits permissible
floating-point behaviors. Implementations or modes of implementations that fall out-
side of the proposed new specification will not pass conformance testing.

30 PROPOSAL FOR EXTENSION OF JAVA FLOATING POINT SEMANTICS
Notes for Implementors

The existing Java programming language and virtual machine specifications specify that val-
ues of typefloat and operators on values of tyf@oat behave exactly as specified for
IEEE 754 single format values. Values of tygaub1e and operators on values of typeu-

ble behave exactly as specified for IEEE 754 double format values. In particular, the Java
programming language and virtual machine currently require support of IEEE 754 denor-
malized floating-point numbers and gradual underflow. In the present proposal, these proper-
ties continue to apply to FP-strict code but not to FP-wide code.

Some CPU architectures may need to take special care to implement fully conforming
FP-strict operations. For instance, CPUs with fused multiply and add instructions may be
unable to use those instructions when implementing FP-strict operations.

In order to implement conforming FP-strict operations on floating-point values on
Intel Architecture CPUs (e.g. 486 or Pentium), a Java virtual machine implementation has
to implement an operation such as multiplication using a code sequence equivalent to the
following:

f1d gword ptr [dx]
fclex
fmul gword ptr [dy] // 53-bits of sign., 15-bits of exp.
fstsw word ptr [sw] // rounded-up in C1 and sticky
// in Precision(Inexact)
fst gword ptr [dtmp] // 53-bits of significand,

fstsw ax // and 11-bits of exponent

and ax,0x30 // Precision/Inexact AND Underflow
xor ax,0x30 // set after fmul and store

jne skip // if not then okay, continue

// subroutine call to fix-up:

// fix-up will use [sw] and top of x87 to round and clamp as
// required by strict Java floating-point

skip: fstp qword ptr [dz]

Note that the following code sequence:

f1d gword ptr [dx]
fmul gword ptr [dy]
fstp gword ptr [dz]

is not sufficient and will not satisfy future conformance testing.

	Proposal for Extension of JavaTM Floating Point Semantics, Revision 1, May 1998
	Introduction and Scope
	Summary of Changes in Revision 1 of Proposal
	IEEE 754 Floating-point Formats
	Proposed Changes to the Java Language Specification
	Section 3.9, Keywords
	Section 4.2.3, Floating-Point Types and Values
	Section 5.1.8, Format Conversion
	• If the value is represented in float format, then the implementation may, at its option, conver...
	• If the value is represented in double format, then the implementation may, at its option, conve...
	Section 5.2, Assignment Conversion
	Section 5.3, Method Invocation Conversion
	Section 5.6.1, Unary Numeric Promotion
	Section 5.6.2, Binary Numeric Promotion
	Section 8.1.2, Class Modifiers
	Section 8.3, Field Declarations
	Section 8.4.1, Formal Parameters
	Section 8.4.3, Method Modifiers
	Section 8.3.3, Constructor Modifiers
	Section 8.4.6.1, Overriding (By Instance Methods)
	Section 9.1.2, Interface Modifiers
	Section 10.1, Array Types
	Section 14.3, Local Variable Declaration Statements
	Section 15.1, Evaluation, Denotation, and Result
	Section 15.2, Variables as Values
	Section 15.6, Evaluation Order
	Section 15.7.1, Literals
	Section 15.7.3, Parenthesized Expressions
	Section 15.10, Field Access Expressions
	Section 15.11, Method Invocation Expressions
	Section 15.12, Array Access Expressions
	Sections 15.13.2, 15.13.3, 15.14.1, 15.14.2, Prefix and Postfix Operators
	Section 15.14.4, Unary Minus Operator -
	Section 15.15, Cast Expressions
	Section 15.16, Multiplicative Operators
	Section 15.17.2, Additive Operators (+ and -) for Numeric Types
	Section 15.19, Relational Operators
	Section 15.20.1, Numerical Equality Operators == and !=
	Section 15.24, Conditional Operator ? :
	Sections 15.25.1, 15.25.2 Simple and Compound Assignment Operators
	Section 15.27, Constant Expression
	Section 20.9, The Class java.lang.Float
	Section 20.10, The Class java.lang.Double

	Proposed Changes to the Java Virtual Machine Specification
	Chapter 2, Java Concepts
	Section 3.2.2, Floating-Point Types and Values
	Section 3.4, Words
	Section 3.6.1, Local Variables
	Section 3.6.2, Operand Stacks
	Section 4.3.3, Method Descriptors
	Section 4.4.4, CONSTANT_Integer and CONSTANT_Float
	Section 4.4.5, CONSTANT_Long and CONSTANT_Double
	Section 4.6, Methods
	Section 4.7.4, Code Attribute
	Section 4.7.7, LocalVariableTable Attribute
	Section 4.8.1, Static Constraints
	Section 4.8.2, Structural Constraints
	• At no point during execution can the order of the words of a two-word type (long or double) be ...
	• At no point during execution can the operand stack grow to a depth greater than that implied by...
	• At no point during execution can more values be popped from the operand stack than it contains.
	• Where an instruction can be executed along several different execution paths, the operand stack...
	Section 4.9.3, Long Integers and Doubles
	Section 4.10, Limitations of the Java Virtual Machine and class File Format
	Section 5.1, The Runtime Constant Pool (in JVMS First Revision only)
	Chapter 6, Java Virtual Machine Instruction Set
	Format Conversion

	• If the value is represented in float format, then the implementation may, at its option, conver...
	• If the value is represented in double format, then the implementation may, at its option, conve...
	Load and Store Instructions
	Arithmetic Instructions
	Type Conversion Instructions
	Object and Array Manipulation Instructions
	Comparison Instructions
	Method Invocation Instructions

	• If this is a class (static) method invocation, the nargs argument values are popped from the op...
	Return Instructions
	Operand Stack Management Instructions
	Chapter 7, Compiling for the Java Virtual Machine
	Chapter 9, An Optimization

	Implications for Compilers and Tools
	widefp private double add(double a, double b) { return a + b; }
	strictfp private double add(double a, double b) { return a + b; }

	Alternatives for Java Virtual Machine Implementors
	Implications for Testing
	Notes for Implementors
	fld qword ptr [dx]
	fclex
	fmul qword ptr [dy] // 53-bits of sign., 15-bits of exp.
	fstsw word ptr [sw] // rounded-up in C1 and sticky
	// in Precision(Inexact)
	fst qword ptr [dtmp] // 53-bits of significand,
	fstsw ax // and 11-bits of exponent
	and ax,0x30 // Precision/Inexact AND Underflow
	xor ax,0x30 // set after fmul and store
	jne skip // if not then okay, continue
	// subroutine call to fix-up:
	// fix-up will use [sw] and top of x87 to round and clamp as
	// required by strict Java floating-point
	skip: fstp qword ptr [dz]
	fld qword ptr [dx]
	fmul qword ptr [dy]
	fstp qword ptr [dz]

