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1. Abstract

An investigation to find afast quicksort implementation for Java by sysematicaly exploring a portion of
the quicksort implementation space. Based on empirica results, new tuning settings are found which
yied a 5% improvement over the current system sort routine.

2. | ntroduction

Quicksort is a deceptively smple sorting dgorithm. Each iteration of quicksort on an array A findsthe
proper postion for asingle dement and putsitinplace, say to A[ j ] . At the sametime, quicksort
maintains an invariant that dementsto theleft of A[ j | arelessthan (or equal to) A[ j ] and dements
totheright of Al j ] aregreater than (or equal to) A[ j ] . The quicksort agorithm can then be run
separady onthe arraysto the left and right of A[ j ] leaving the entire array sorted &t the end. In the
average case, quicksort isaspeedy O(nlogn) . However, in the worst case, quicksort degrades to

O(n?) . Other sorts, such as merge sort, have guaranteed O(nlogn) performance for al inputs;

quicksort isinteresting becauseit is faster than these dgorithmsin the average case. Unfortunately,
naive quicksort implementations exhibit quadratic behavior on common inputs, such as aready sorted
data Thelong history of twesking quicksort amsto avoid quadratic behavior on likely inputs while
preserving its fast average case behavior, even though the possibility of quadratic behavior cannot be
eiminated entirdy [17].

The quicksort literature includes both detailed theoretical anadlyses [24] [14] and engineering
investigations[1] [25]. This paper frequently cites the work of Sedgewick ([26], [24], etc.) aswell as
the work of Bentley & Mcllroy ([1]). The reported findings on using specific agorithmic choices has a
times been contradictory. For example, Sedgewick [24] and Bentley & Mcllroy [1] differ on whether it
isfaster to use insertion sort on small arrays intermixed with the quicksort processing or to run insartion
sort on the entire array subsequent to the quicksort steps. Detailed andytica models of quicksort which
count the number of comparisons or swaps may not closely track the relative performance of two
quicksort variants due to many factors, such as complicated microprocessor behavior and memory
hierarchy effects. Therefore, while anaytic modds can give an indication of reative dgorithmic
performance, using these models does not obviate the need for benchmarking on the actual machines,
language environment, and data of interest if the god is finding afast quicksort implementation for the
platform in question.

This project is concerned with finding a fast quicksort implementation written in the Java
programming language. Besdes the usud complications of finding afast quicksort, Java execution
environments offer numerous other variables to contend with. While a C or FORTRAN program is
typically compiled directly from source code to object code or executable, a Java program is usudly
first compiled to an intermediate representation cdled aJavacl ass file Thecl ass fileisthen
further “compiled” by a Javavirtua machine (VM) to machine code [16]. Whilethe first VMswere
smple interpreters, more modern VMs, such as Sun’s HotSpot [20], dso include “just-intime’
compilers (jits). That is, the executed machine code is generated as needed on the fly by the jit. More
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correctly, HotSpot is a hybrid system incorporating both an interpreter and ajit; if asection of code is
only run afew times, it is fagter to interpret the code rather than invoking the jit snce there will not be
enough time to amortize the compilation cost. This runtime behavior makes the Java performance
model more opague than the model for C. In Java, the best tuned code will definitely be a function of
the specific VM version used, especidly since JVMs continue to add more sophisticated analyses and
optimizations.

3. Background

3.1. Quicksort Options Overview
A smple quicksort implementation in Javais shown in Figure 1

/1 Sinmple quicksort adapted from Sedgew ck, Algorithns in C, 3rd ed.,
/1l section 7.1 [23]
class Sortl {
public static void sort(int[] a) {
qui cksort(a, 0, a.length-1);
}

static void quicksort(int[] a, int L, int R {
if( R<=1)
return;
int p=partitionCL(a, L, R findPivotR(a, L, R));
qui cksort(a, L, p-1);
qui cksort(a, p+l, R);
}
public static int findPivotRL(int [] a, int L, int R {
assert(L >=0 & L <= R & R < a.length);
return R

}

/**

* Classic quicksort partition nethod

*/

public static int partitionCL(int [] a, int L, int R int pivot) {
assert(L <= R && L >=0 && (pivot >= L&& pivot <= R));

Figure 1 — Simple Quicksort Code

Many adornments of this short code have been explored, including pivoting options, partitioning options,
and options for managing date information. The options of interest to this project include those which
keep a good average case while mitigating worst case performance on likely inputs, such as sorted data
During pivating, areference dement is chosen to categorize the remaining data e ements so they can be
moved to the | eft or the right of the pivot dement. The best case occurs when the pivot isthe median
element; the remaining dements are then equdly split into two haves. The worst case occurs when the
amdlest/largest dement isapivot snce the “split” is very uneven.  Choosing asingle dement in afixed
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pogtion (eg. L for the leftmost ement, R for the rightmost dement) is fast but easly vulnerable to
quadratic behavior. Choosing a random element is another option would take some computation. One
way to avoid choosing the largest or smallest eement is to sample some number of e ements and choose
an dement from the middle of the sample. People have consdered the median of three dements[24],
medians of larger samples[24], pseudo-medians (e.g. the “ninther,” the median of three medians of
three) [1], anongst other variations, pivoting options are summary in Table 1. Sophiticated quicksorts
use multiple pivoting techniques depending on the size of the array being sorted [1].

Table 1 — Partial List of Pivoting Alter natives

Single element samples Fird or last dement
Random dement
Multiple element samples Median of 3 (L, L+1, and R used in [24], Singleton proposed L,

(L+R)/2, and R)

Median of larger sample (Sedgewick reports using larger sample
not worthwhile [24])

Pseudo-medians, eg. ninther median of medians [1]

Oncethe pivot is selected, the remaining eements must be partitioned to be less than, greater
than (or equd to) the pivot eement. There are two main partitioning choices, classica partitioning (as
shownin Figure 1) or the more el aborate three-way partitioning used by Bentley & Mcllroy [1]. The
advantage of the latter technique isits handling of equa keys, a problem that has also been studied for
classcd partitioning [27]. Pivoting and partitioning are usudly done as part of an integrated
partiti on operation; they are differentiated here to illustrate possible points in the design space.

While quicksort can befadt for large files, it has proportiondly high overhead for smdl files. As
origindly suggested by Hoare [10], for sufficiently smal subarrays quicksort can switch over to a sort
more efficient for afew eements, such asinsertion sort. The optimal switch over size has been reported
to be around 10; athough previous work has indicated performanceisfairly flat switching to insertion
sort between 5 and 20 [24]. Sedgewick has advocated doing a single pass of insertion sort after the
quicksort [24] while Bentley & Mcllroy found intergpersed insertion sortsto be faster [1].

Besides speed, another advantage to quicksort is that not much additiona memory is needed to
dore the dgorithm’s state while sorting.  The depth of recursion can be limited to log, n by aways
choosing to sort the smaller remaining subarrays firgt after partitioning [9]. Instead of using explicit
recursion, quicksort can be coded as aloop with an explicit stack, in which case the same trick can be
used to bound stack growth.

There are many other potentia beneficid source code transformations to quicksort, such as
loop unralling [24], but they will not be explored in this project.

3.2. Peformance

While analytic models of quicksort have vaue, to predict fine distinctions in performance requires actud
measurements since compilers and architectures introduce important factors not captured by the
models.
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3.21. Compiler Concerns

As programming language design and compilers have matured, programmers have come to rely more
heavily on compilersto provide low-leve optimizationsin lieu of writing hand- crafted assembly code.
As compilersfor agiven language develop, programmers can assume a greater depth of optimization
will be performed. While the origind VM was asmple interpreter, current VMs provide
optimizations such as aggressive inlining and bounds check dimination [3].! However, tail-cdl
eimination is not provided [22]; therefore, in this project recursive quicksort implementations will not
have guaranteed O(logn) storage needs.? Typica VMswith jits present an additional complication in
measuring performance: the machine code corresponding to a section of code evolves and changes as
the program runs. Therefore, measuring the “ steady state” performance of a method takes on added
importance. Improperly measuring start-up overhead can be mitigated by dlowing code to “warm up”
for aleast ten seconds before taking timing measurements [4]. VMswill continueto evolve. Evenin
the same VM lineage, the fastest running code in one version of, say, HotSpot, may not the be fastest
running in the next release. For example, initid versons of HotSpot may have favored arecursve
quicksort over an otherwise equivaent iterative implementation due to limitations of the optimizer (see
discussion in Appendix 88.3).

3.2.2. Architectural Aspects

Even though the Javacl ass fileisonly loosdy tied to the sequence of machine ingructions which
actudly get executed, manudly performing certain trandformations could hinder rather than help
performance. Previouswork found limited loop unrolling can improve quicksort performance [24].
However, loop unrolling can also increase register pressure, that is the number of registers needed
smultaneoudy to avoid having to store and reload vaues to and from memory. A priori, architectures
with more registers (e.g. atypical RISC processor) will favor gregter loop unrolling than architectures
with fewer registers (e.g. the x86).

Other processor architectures and implementation features will also affect performance. For
example, the SPARC architecture s register windows are an intended optimization to make function
calsfaster [31].> However, if the hardware provided set of register contexts is exhausted, the register
window overflow/underflow traps can be quite expensive, cregting alarge performance discontinuity
between certain levels of nested cdls.

In genera, counting instructions or pecific operationsin a processor model like MIX [13] does
not fully capture the complexities of contemporary hardware. The MIX-type modd dso did not
correspond to the C performance model used by Bentley and Mcllroy [1]. While counting the number
of compares and swaps (or more involved models [24]) are useful guides to determining overdl
performance, current processors are deeply pipdined and most dynamically execute ingtructions out of
order [7]. Therefore, the runtime behavior of processorsis very complicated. Additiondly, the rdative
performance of processor and memory systems continues to widen; in contrast, many paper modes

! See Appendix §8.1 for adiscussion of bounds check dimination.

2 See Appendix §8.2 for adiscussion of tail-cal dimination

? Register windows impose overhead on the SPARC during systems calls (since considerable sate
needs to be saved). Some of the benefits of register windows could be redized using link-time
optimization techniques[30].
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assume dl memory accesses are equaly expensive. Consequently, measuring runtimes on actua
hardwareis crucid to make fine digtinctions in performance between minor agorithmic variants.

4.  Methodology

In anumber of problem domains, ranging from dense linear algebra BLAS (PHIPAC [2] and Atlas
[32]), to FFT's (FFTW [5]), and signd processing (SPIRAL [19]), research groups have adopted an
“automated empirica optimization of software’” (AEOS) [32] gpproach to finding fast implementations
of dgorithms. That is, these groups generate numerous variants of an dgorithm and then benchmark the
variants according to some criteria. For agiven set of parameters, dl the possible variants may be
generated and run, or some heuristic may be employed to prune the search space so that a near
“optima” variant can be found in areasonable length of time. Recent work has proposed using
datistical techniques to evaluate agorithm candidates and develop a stopping criteria[29]. The
concerns discussed above in 83.2 and the many possible variants of the quicksort agorithm imply the
AEQS approach might be fruitfully gpplied to finding afast quicksort algorithm.

4.1. Project Specifics

For this project, around 1300 quicksort variants were generated and benchmarked. In al casesthe
elements being sorted were 32-hit integers. The benchmarksincluded severd kinds of inputs. random
distinct integers, random integers from arange < the size of the array, sorted, and reverse sorted data.
All runs were done on lightly-loaded dual-processor Sun Ultra 80 workstations with 450 MHz
UltraSPARC processors and 1 GB of RAM using version 1.4.0 of the HotSpot server compiler.* The
generation of quicksort variants and their benchmarking were independent operations. In other words,
an exhaugtive search was made of the chosen design space; no intelligent search method (e.g.
Metropolis, smulated annedling) was attempted for this project.

4.2. Generating the Code

4.21. Easing code generation

Idedlly, each of the quicksort variants would be idiomatic Java code smilar to what a programmer
would write. However, due to the large number of variants being tested, the quicksort programs were
partidly generated autometicaly and expediting their generation guided several design decisions.
Working from three basic code skeletons, textua substitution and settings of variables were used to
create the variants. Firgt, basic skeletons for recursive quicksort, nonrecursive without a bounded
stack, and non-recursive with a bounded stack were written. (Whilethe logica structure of the three
vaiantsis smilar, usng only one or two skeletons seemed to introduce unneeded complexities) The
non-recursve skeletonusesan Ar r ayLi st object defined in the Java collections library to
implement a stack. The non-recursive code with bounded stack alocated a fixed size array to hold the
worst-case number of stack eements (Java arrays can have a most 2*'—1 dements so the size needed

* HotSpot actudly includes two jits, the client compiler and the server compiler, which are tuned to
different workloads. The client compiler starts up more quickly but does limited optimization. While the
server compiler has ahigher start up cost and compiles code more dowly, it does more aggressive
optimizations which result in faster code for long-running programs.
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intheworst caseisknown.) Second, conditional code was added to support each of the agorithmic
options. For example, as shown in 89, the following code dlows insertion sort use to be turned on,
elther intergpersed with quicksort or afterwards, and controls the threshold size of for insertion sort to
be used:
i f(insertSortThreshold > 0) {

i f(insertSortDuring) {

if((R L) <= insertSortThreshold) {
Uils.insertSort(a, L, R);

return;
}
}
el se {
if((R L) <= insertSortThreshold) {
return;

}

}

Thevariablesi nsert Sort Threshol d andi nsert Sort Duri ng arest ati ¢ fi nal class
variables, that is, they are congtant for a given quicksort variant. Therefore, the compiler (either the
Javatocl ass filecompiler or jit) can use that information to dide unnecessary dead code. |If
i nsert Sort Threshol d iszero, no code for this block should be executed at runtime. However, if
i nsert Sort Threshol d iSS&t to, Say, 7 and insertion sort is being done during the quicksort, the
above codeis equivaent to
if((RL) <=7) {

Uils.insertSort(a, L, R);

return,

}

Other design decisons are controlled in an analogous manner. However, using this technique did
introduce some complications. For example, the interface to classica and three-way partitioning is
different; classca partitioning returns a sngle value, the find location of the pivot, while three-way
partitioning returns the range of vaues equd to the pivot. Unfortunately, due to time condraints, a
random choice for finding the pivot value was not explored since the random pivoting would have
required a different method signature (an extra parameter to hold the Rand omabject generating the
sequence of random numbers).

4.2.2. Defining the search space

The supported potentia design space includes many of the choices discussed in 83.1:

Rvating
leftmost dement
median of three above a sze threshold (explored range [5, 15])
ninther above a size threshold (possibly with median of three for smaller sizes, (explored
values {30, 35, 40, 45})

Partitioning
classicd
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three-way
Insertion sort
threshold to switch to insertion sort (explored range [5,15])
if usng insertion sort, whether to insartion sort during of after quicksort
Stack options
implicit stack through recursion
explicit stack without growth bound
explicit stack with growth bound
The explored range for insertion sort was determined based on prior resultsin the literature. The
variables are not dl independent. For example, the value for the ninther threshold should be larger than
the median of three threshold (and both must be at least aslarge as 9 and 3, respectively). To limit the
search space, as done by Bentley & Mcllroy, the median of three threshold was the same as the
insertion sort threshold if insertion sort was being used. To further limit the search space, at least one
multi-element pivoting technique must be used.

A generator program read in the three code skeletons, performed the required textua
subdtitutions, and wrote out the resulting files. The settings for a particular quicksort variants are
mangled into the resulting file name; eg. QS_pi vot MLT7N40_part BM i sD7_recur Y. j ava fora
variant that used the middle dement (ML) for a pivot on arrays smdler than 7 eements, switched to a
median of three pivot between 7 (T7) and 39 ements, then switched to a ninther pivot on arrays larger
than 40 (N4 0) while using Bentley and Mcllroy partitioning (par t BM) with insertion sort for arrays
gmdler than seven dements (i s D7) and truerecurson (r ecur Y), which are the settings from [1].
Table 2 gives the name full decoding.

Table 2 — Name mangling used to indicate quicksort options

Pivoting Options ML middle dement
L1 leftmogt dement
Tn switch to median of three for arraysat leest alarge asn
Nn switch to ninther for arrays at least aslarge asn
Partitioning options part CL dassicd partitioning
part BM Bentley & Mcllroy three-way partitioning
Insertion sort i s[DJA]Nn if n iszero, do not use insartion sort; if nisnonzero insertion

sort for arrays at least aslargeasn. D indicatesinsertion
sort cdled during quicksort; A indicates one insertion sort
pass after quicksort.

Stack management recuryY explicit recursion.
recur N explicit stack without growth bound.
recurS explicit stack with growth bound

4.3.  RunningtheVariants

Next, atest and benchmarking harness was needed to run the variants. Since large arrays were going
to be used, handling memory sensibly was important. A master copy of each benchmark test was
initialized and then copied into another array. Sorts were performed on this copy. Therefore, new
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arrays did not have to be alocated during the benchmark runs. For every quicksort variant, each
benchmark array was copied and sorted three times, recording the time for each sort. The correctness
of the sort was checked once for each (quicksort variant © benchmark array) combination. (Only
verifying one sorting effort instead of al three was judged sufficient since the quicksort programs do not
contain any operations that should vary when sorting the same set of vauestwice)) All the quicksort
variants that ran to completion correctly sorted the arrays (quicksort variants that took twice as long as
areference time were terminated before finishing).

Since the benchmark programs would be running for many hours, a dow memory lesk could
adversdly affect performance and skew results. Java sreflection facility was being used to load in the
quicksort variants. The compiled code for these classes could pollute memory long after it was needed;
to avoid this possibility, a custom class loader [15] was written so that code for dready run quicksort
variants could be discarded by the garbage collector.

4.4. Measuring Performance

Each quicksort variant was first used to sort a 10 million element array of random integers, which took
around ten seconds. Using thiswarm-up array alows HotSpot a chance to optimize the quicksort
method. Next, the quicksort variant is used to sort four arrays of 7 million integers:

random integers between 0 and 999

random integers (no range congraint)

sorted integers

reverse sorted integers
Each kind of trid was repeated three times. The main performance metric used is the average running
time over the twelve sorts. A wide range of performance was observed; see Figure 2 for distribution of
performance information.
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5. Results

Figure 2 — Histogram of Performance Digtribution of Quicksort Variants
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Figure 2 shows the percentage of quicksort variants that fall into a 100 millisecond performance bucket;
e.g. about 8% of al tested variants have an average performance between 7400 and 7500 milliseconds.
Asshown in Figure 2, 90% of al quicksorts averaged between 6700 and 8900 milliseconds on the four
array types. Quicksorts that averaged more than 13100 milliseconds were terminated.

The systlem library integer sort routineis essentidly atranditeration of the Bentley and Mcllroy
C codeinto Java. For comparison purposes, this existing sort routine was run severa times before and
after the quicksort variants. The resulting averages varied from 6740 to 7091 milliseconds with a mean
of 6927. The high and low results are within 3% of the mean average. Thisindicates system
performance over timeisreaively stable. Of al the variants tested, around 30 (2.5%) were fagter than
the average time for the system sort routine (but none were gtrictly faster than the fastest recorded time
for the system sort).

An important comparison to make is between the system sort routine and the generated
quicksort variant with nearly equivalent options. Of two variants Smilar to the system sort,

QS _pivot MLT7N4AO_part BM i sD7_recurY time: 7618 nsec
QS _pivot MLT6N4O _partBM i sD6_recuryY time: 7469 nsec

the firs had an average time nearly ten percent dower than the system sort routine. Thisindicatesa
performance bug in the code skeleton or an inability of HotSpot to properly optimize the automaticaly
generated code. Thisissue merits further investigation. Generating more idiomatic code for the three-
way partition would probably help performance here.

The fastest empiricaly found routines are dl smilar:
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QS _pivot MLT15N4S partBM.isD15 recurS tinme: 6778
QS_pivot MLT1I5N40_partBM i sD15 recurS tinme: 6780
QS_pivot MLT1I5N35 partBM i sA15 recurS tinme: 6793
QS _pivot MLT14N30_partBM i sD14 recurS tinme: 6812
QS _pivot MLT14N35 partBM.isD14 recurS tinme: 6812
QS_pivot MLT1I5N35 partBM. i sD15 recurS tinme: 6813

All use alarge vadue for switching to insertion sort (15), dl use three-way partitioning, and dl usea
Seticaly alocated array to hold their stack information. With the exception of the third variant that does
insertion sort afterwards, the fastest routines mostly use the Bentley & Mcllroy agorithm with different
tuning settings. These fast variants occur at the limit of the explored insertion sort range; exploring
additiona variants with larger insertion sort thresholds would be worthwhile.

After gathering the above data, two more quicksort variants were tried: the system quicksort
with the best tuning options found empiricaly (insertion sort threshold of 15 and ninther threshold of 45)
and the auto-generated quicksort with athree-way partition body more similar to the system quicksort.
While the latter variant did not have improved performance, the former did yied over four runstime of
{6519, 6544, 6576, 6636} milliseconds for an average of 6569. In other words, with the new tuning
settings, the modified system sort routine is over 5% faster (and the dowest time with the new tuning
settings is faster than the fastest time with the old settings). Therefore, even though the generated code
variants were not consstently faster than the system sort routine, their tuning settings till have some
predictive vdidity for the sandard system sort implementation.

5.1. Recursion

Given the number of quicksort variants generated, it is worthwhile to study of the effects of varying
sgngle implementation options.

10
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Figure 3 — Histogram of Performance by Stack Policy
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Figure 3 issmilar to Figure 2 except that number of variantsin 100 millisecond performance category is
shown instead of percentage of variants in each category. Figure 3 shows that non-recursive
implementations with bounded stack growth are the most frequent top performers. Regular recurson is
next fastest and nonrecursive with no stack limit is dowest, perhaps due to data structure issues.
However, Figure 3 does not display the difference in stack management performance for otherwise
equivdent quicksort variants (those that only differ in stack management policy). Figure 4 showsthe
relaive performance of the three options. For a given point, the x-axis shows the benefit (differencein
milliseconds of performance) of using no recursion and a bounded stack over using no recursion without
abounded stack; the y-axis shows the benefit of using recursion over using no recursion without a
bounded stack (negative vauesindicate no recurson with abounded stack was faster). Therefore,
among the two norrecursive options, it was dways faster to use a bounded stack. Using recursion
was dmogt dways fagter than no recursion without a bounded stack. With other variables held
congtant, no recursion with a bounded stack was usudly the fastest policy.

11



Figure 4 — Rélative Performance of Different Stack Management Policies
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5.2.

Insertion Sort: After or During?

Figure 5 — Réative Performance of Insertion Sort During or After Quicksort
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Sedgewick haslong suggested performing one insertion sort pass after a quicksort should be faster than
intergpersed insertion sorts [23] [24]. Bentley & Mcllroy found the opposite. At least for the variants

12



August 15, 2003

examined in this project, our results agree with Bentley & Mcllroy in most cases. Figure5isa
histogram of the performance differences between otherwise equivaent quicksort configurations that
only differ on whether or not insertion short is interspersed on done afterwards. Results to the right of
the y-axis are Situations where interspersed insartion sort is fagter; this condtitutes the mgjority of the
trids. Of the seven fastest quicksort variants generated, only one performed insertion short after the
quicksorts. Figure 6 shows that more of the faster quicksorts do insertion sort during the main sorting
activity.

Figure 6 — Histogram of Insertion Sort Performance
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6. Future Work

While faster tuning settings were found, much more work remains to be done. For example, the cause
of performance shortfdlsin the generated variants needs to be explained. By more tailored explorations
of the tuning space, grester than 5% improvements might be found. However, benchmark runs aso
need to be done on different architectures to see how universa and stable the best settingsare. Similar
searches should be undertaking for other primitive types and more tweaks could be added to the search
gpace. Additionaly, the performance of quicksort should aso be compared against mergesort,
including sophisticated mergesorts which use some of the same tricks as quicksort, such as switching to
insertion sort for smal arrays[23]. Overdl, this sudy affirms the sound engineering of the Bentley and
Mcllroy code, dthough updated tuning settings are probably warranted.
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8.  Appendix 1 — Optimization Issuesin Java

8.1. Boundscheck (range check) elimination

A Java program cannot access an array outside of its defined bounds. The most naive implementation
of this requirement checks to make sure each array accessisin bounds,; eg.
for(int i =0; i < n; i++)

sum +=af[i];

would effectively get run as machine code smilar to

for(int i =0; i <n; i++) {
if(i >0 and i <= a.length)
sum +=a[i];
el se
t hrow new ArrayCQut Of BoundsException();

}

Since these checks are codtly, especialy in loops, compilers aim to elide checks on every access by
doing afew checks up front that prove the set of array accesses being considered will stay in bounds;
this transformation is known as bounds check eimination.

8.2. Tail-call dimination

In many languages, when one method calls another, a new stack frame is created to hold the calleg's
parameters, loca variables, and other information. If that last action a method takesisto cal another
method, in principle the current stack frame can be reused for the new method (since no information in
the caller’ s stack frame will ever be re-used). For examplein
static void factorial (int n, int product)

/1 assume n >= 0

if (n==0)

answer = product; // wite final result to external variable

el se
return factorial (n-1, n*product);

the recursive cdl to factorid could be recognized as atail-cdl by the compiler; effectively turning this
amplerecurson into loop iteration. This transformation is required by the Scheme language so that
recursion can be used in place of explicit looping [12].

Java presents anumber of chalengesto traditiond tail-cal dimination. Besides dtering control
flow, in Javaamethod call can lock an object and establish new exception handlers. Additionaly,
security in Java can be based on what methods are on the stack and a thrown exception hasto be able
to rebuild the state of the stack. Because of these consderations, a Java program often needs
information about the state of the method call stack. Therefore, andyses much more involved than
ample control flow are needed to perform legd tail-cdl diminaion in Java. None of the commonly
used VMs performs tail-cal dimination.
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8.3.  On tack replacement

HotSpot works by gathering profiling information while code is being interpreted and then, if the codeis
aufficiently “hot,” generates compiled code for that method. The compiled code would be used the next
time the method was entered. However, consder the case of along-running loop ingde amethod.
When the method isfirst entered, it isinterpreted. Asthe loop runs, profiling information is gathered,
and HotSpot generates a compiled version of the method. However, in old versions of HotSpot, since
the method is never left or caled again, the main loop remains interpreted (although methods the loop
calswill be compiled) [18]. Therefore, in such an environment, due to compiler artifacts, any non
recursive verson of quicksort would likely run slower than arecursive one since the latter would be
compiled while the former would not. Newer version of HotSpot have on stack replacement [11];
that is, amethod running in interpreted mode can be replaced by its compiled equivaent while it
executes, avoiding this performance anomaly.

9. Appendix 2— Sample Quicksort Skeleton

/1l Strings between ‘@ and ‘#' characters are replaced with appropriate

/1 val ues.

/'l Asserts were used during devel opment and debugggi ng but were not enabl ed
/'l during benchmarking runs.

package Sort;

public final class QS _pivot @VNATABTH#NGNIT# part @PPN#_i s@ SPNE@ ST#_recurY {

private final static bool ean randonPi vot = fal se;

private final static int medi an3Threshol d = @BTH#;

private final static int ni nt her Threshol d = @\N9TH#;

private final static int i nsertSort Threshol d = @ ST#;
private final static boolean insertSortDuring = @ SPV#

private final static boolean partitionClassical = @PV#

static {

assert( ((rmedi an3Threshold == 0) || (nmedian3Threshold >= 3)) &&
((nintherThreshold == 0) || (nintherThreshold >= 9)) &&

((rmedi an3Threshold > 0 && ni ntherThreshold > 0)?
(medi an3Threshol d < nintherThreshold):true ) &&
(insertSortThreshold >= 0) );

}

/1l prevent instantiation
private QS _pivot @VNAT@BTEN@GNIT# part @PPN#_i s@ SPN#@ ST#_recurY() {};

public static void sort(int[] a) {
if (partitionC assical)
qui cksort(a, 0, a.length-1);
el se {
qui cksort(a, O, a.length-1, new Pair());

}

if(insertSortThreshold != 0 && !insertSortDuring) ({
sUtils.insertSort(a, 0, a.length-1);
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}
}

static void quicksort(int a[], int L, int R {
int p;
if(R<=1)
return;

/1l code to handle insertion sort options
if(insertSortThreshold > 0) {
if(insertSortDuring) {
if((R L) <= insertSortThreshold) {
Uils.insertSort(a, L, R);
return;
}
}

el se {
if((R L) <= insertSortThreshold) {
return;

}

}

/1 code to handle partition options
i f (medi an3Threshold == 0 && nintherThreshold == 0) {
p = @Uils.partitionCL(a, L, R, @Uils.findPivot @VN#(a,
}
el se if (median3Threshold > 0) {
i f(nintherThreshold == 0) { // nedian of 3 only
p = @GUils.partitionCL(a, L, R
(((R - L) > nedian3Threshol d)
? GUtils.findPivotM3(a, L, R
QsUtils.findPivot @VN#(a, L, R));
}
else { // both nmedian and ninther are bei ng used
int diff = (R - L);
int pivot;
assert(diff >= 0);

i f(diff < median3Threshol d)

pivot = Utils.findPivot @VN#(a, L, R);
else if( diff > nintherThreshol d)

pivot = Utils.findPivotN9(a, L, R);
el se

pivot = Utils.findPivotM3(a, L, R);

p=QUils.partitionCL(a, L, R, pivot);
}
}
else { // nintherThreshold nust be non-zero
assert (ni ntherThreshold > 0);
p=QUils.partitionCL(a, L, R

Ln

R));
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(((R - L) > nintherThreshol d)
? GUtils.findPivotN9(a, L, R
Utils. findPivot @VN#(a, L, R));

}

gui cksort(a, L, p-1);
qui cksort(a, p+l, R;
}

static void quicksort(int a[], int L, int R Pair pair) {
int p;
if(R<=1)
return;

/1 code to handle insertion sort options
if(insertSortThreshold > 0) {
if(insertSortDuring) {
if((RL) <= insertSortThreshold) {
Uils.insertSort(a, L, R);
return;
}
}

el se {
if((RL) <= insertSortThreshold) {
return;

}

}

/1 code to handle partition options
i f (medi an3Threshold == 0 && nintherThreshold == 0) {
/1l return new partition regions in pair
QUtils.partitionBMa, L, R QUtils.findPivot@VN#(a, L, R),
}
el se if (median3Threshold > 0) {
i f(nintherThreshold == 0) { // nedian of 3 only
sUils.partitionBMa, L, R
(((R - L) > nedian3Threshol d)
? GUtils.findPivotM3(a, L, R
Utils.findPivot @VN#(a, L, R)), pair);
}
else { // both nmedian and ninther are bei ng used
int diff = (R - L);
int pivot;
assert(diff >= 0);

i f(diff < median3Threshol d)

pivot = QUtils.findPivot @VN#(a, L, R);
else if( diff > nintherThreshol d)

pivot = Utils.findPivotN9(a, L, R);
el se

pair);
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pivot = @sUils.findPivotM3(a, L, R);

Uils.partitionBMa, L, R pivot, pair);
}
}
else { // nintherThreshold nust be non-zero
assert (nintherThreshold > 0);
Uils.partitionBMa, L, R
(((R - L) > nintherThreshol d)
? GUtils.findPivotN9(a, L, R
. @GUils.findPivot@VN#(a, L, R)), pair);

}

qui cksort(a, L, pair.L);
qui cksort(a, pair.R, R);
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