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1. Abstract 
An investigation to find a fast quicksort implementation for Java by systematically exploring a portion of 
the quicksort implementation space.  Based on empirical results, new tuning settings are found which 
yield a 5% improvement over the current system sort routine. 

2. Introduction 
Quicksort is a deceptively simple sorting algorithm.  Each iteration of quicksort on an array A finds the 
proper position for a single element and puts it in place, say to A[j].  At the same time, quicksort 
maintains an invariant that elements to the left of A[j] are less than (or equal to) A[j] and elements 
to the right of A[j] are greater than (or equal to) A[j].  The quicksort algorithm can then be run 
separately on the arrays to the left and right of A[j] leaving the entire array sorted at the end.  In the 
average case, quicksort is a speedy ( log )O n n .  However, in the worst case, quicksort degrades to 

2( )O n .  Other sorts, such as merge sort, have guaranteed ( log )O n n  performance for all inputs; 
quicksort is interesting because it is faster than these algorithms in the average case.  Unfortunately, 
naïve quicksort implementations exhibit quadratic behavior on common inputs, such as already sorted 
data.  The long history of tweaking quicksort aims to avoid quadratic behavior on likely inputs while 
preserving its fast average case behavior, even though the possibility of quadratic behavior cannot be 
eliminated entirely [17]. 

The quicksort literature includes both detailed theoretical analyses [24] [14] and engineering 
investigations [1] [25].  This paper frequently cites the work of Sedgewick ([26], [24], etc.) as well as 
the work of Bentley & McIlroy ([1]).  The reported findings on using specific algorithmic choices has at 
times been contradictory.  For example, Sedgewick [24] and Bentley & McIlroy [1] differ on whether it 
is faster to use insertion sort on small arrays intermixed with the quicksort processing or to run insertion 
sort on the entire array subsequent to the quicksort steps.  Detailed analytical models of quicksort which 
count the number of comparisons or swaps may not closely track the relative performance of two 
quicksort variants due to many factors, such as complicated microprocessor behavior and memory 
hierarchy effects.  Therefore, while analytic models can give an indication of relative algorithmic 
performance, using these models does not obviate the need for benchmarking on the actual machines, 
language environment, and data of interest if the goal is finding a fast quicksort implementation for the 
platform in question. 

This project is concerned with finding a fast quicksort implementation written in the Java 
programming language.  Besides the usual complications of finding a fast quicksort, Java execution 
environments offer numerous other variables to contend with.  While a C or FORTRAN program is 
typically compiled directly from source code to object code or executable, a Java program is usually 
first compiled to an intermediate representation called a Java class file.  The class file is then 
further “compiled” by a Java virtual machine (JVM) to machine code [16].  While the first JVMs were 
simple interpreters, more modern JVMs, such as Sun’s HotSpot [20], also include “just-in time” 
compilers (jits).  That is, the executed machine code is generated as needed on the fly by the jit.  More 
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correctly, HotSpot is a hybrid system incorporating both an interpreter and a jit; if a section of code is 
only run a few times, it is faster to interpret the code rather than invoking the jit since there will not be 
enough time to amortize the compilation cost.  This runtime behavior makes the Java performance 
model more opaque than the model for C.  In Java, the best tuned code will definitely be a function of 
the specific JVM version used, especially since JVMs continue to add more sophisticated analyses and 
optimizations. 

3. Background 

3.1. Quicksort Options Overview 
A simple quicksort implementation in Java is shown in Figure 1: 

// Simple quicksort adapted from Sedgewick, Algorithms in C, 3rd ed.,  
// section 7.1 [23] 
class Sort1 { 
    public static void sort(int[] a) { 
 quicksort(a, 0, a.length-1); 
    } 
 
     
static void quicksort(int[] a, int L, int R) { 
 if( R <= L) 
     return; 
 int p = partitionCL(a, L, R, findPivotR(a, L, R)); 
 quicksort(a, L, p-1); 
 quicksort(a, p+1, R); 
    } 
    public static int findPivotR1(int [] a, int L, int R) { 
 assert(L >=0 && L <= R && R < a.length); 
 return R; 
    } 
 
   /** 
     * Classic quicksort partition method 
     */ 
    public static int partitionCL(int [] a, int L, int R, int pivot) { 
 assert(L <= R && L >=0 && (pivot >= L&& pivot <= R)); 
      ...  
    } 
} 

Figure 1 — Simple Quicksort Code 

Many adornments of this short code have been explored, including pivoting options, partitioning options, 
and options for managing state information.  The options of interest to this project include those which 
keep a good average case while mitigating worst case performance on likely inputs, such as sorted data.  
During pivoting, a reference element is chosen to categorize the remaining data elements so they can be 
moved to the left or the right of the pivot element.  The best case occurs when the pivot is the median 
element; the remaining elements are then equally split into two halves.  The worst case occurs when the 
smallest/largest element is a pivot since the “split” is very uneven.   Choosing a single element in a fixed 
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position (e.g. L for the leftmost element, R for the rightmost element) is fast but easily vulnerable to 
quadratic behavior.  Choosing a random element is another option would take some computation.  One 
way to avoid choosing the largest or smallest element is to sample some number of elements and choose 
an element from the middle of the sample.  People have considered the median of three elements [24], 
medians of larger samples [24], pseudo-medians (e.g. the “ninther,” the median of three medians of 
three) [1], amongst other variations; pivoting options are summary in Table 1.  Sophisticated quicksorts 
use multiple pivoting techniques depending on the size of the array being sorted [1]. 

Table 1 — Partial List of Pivoting Alternatives 

Single element samples First or last element 
 Random element 
Multiple element samples Median of 3 (L, L+1, and R used in [24], Singleton proposed L, 

(L+R)/2, and R) 
 Median of larger sample (Sedgewick reports using larger sample 

not worthwhile [24]) 
 Pseudo-medians, e.g. ninther median of medians [1] 

Once the pivot is selected, the remaining elements must be partitioned to be less than, greater 
than (or equal to) the pivot element.  There are two main partitioning choices, classical partitioning (as 
shown in Figure 1) or the more elaborate three-way partitioning used by Bentley & McIlroy [1].  The 
advantage of the latter technique is its handling of equal keys, a problem that has also been studied for 
classical partitioning [27].  Pivoting and partitioning are usually done as part of an integrated 
partition operation; they are differentiated here to illustrate possible points in the design space. 

While quicksort can be fast for large files, it has proportionally high overhead for small files.  As 
originally suggested by Hoare [10], for sufficiently small subarrays quicksort can switch over to a sort 
more efficient for a few elements, such as insertion sort.  The optimal switch over size has been reported 
to be around 10; although previous work has indicated performance is fairly flat switching to insertion 
sort between 5 and 20 [24].  Sedgewick has advocated doing a single pass of insertion sort after the 
quicksort [24] while Bentley & McIlroy found interspersed insertion sorts to be faster [1]. 

Besides speed, another advantage to quicksort is that not much additional memory is needed to 
store the algorithm’s state while sorting.  The depth of recursion can be limited to 2log n  by always 
choosing to sort the smaller remaining subarrays first after partitioning [9].  Instead of using explicit 
recursion, quicksort can be coded as a loop with an explicit stack, in which case the same trick can be 
used to bound stack growth. 

There are many other potential beneficial source code transformations to quicksort, such as 
loop unrolling [24], but they will not be explored in this project. 

3.2. Performance 
While analytic models of quicksort have value, to predict fine distinctions in performance requires actual 
measurements since compilers and architectures introduce important factors not captured by the 
models. 
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3.2.1. Compiler Concerns 

As programming language design and compilers have matured, programmers have come to rely more 
heavily on compilers to provide low-level optimizations in lieu of writing hand-crafted assembly code.  
As compilers for a given language develop, programmers can assume a greater depth of optimization 
will be performed.  While the original JVM was a simple interpreter, current JVMs provide 
optimizations such as aggressive inlining and bounds check elimination [3].1  However, tail-call 
elimination is not provided [22]; therefore, in this project recursive quicksort implementations will not 
have guaranteed (log )O n  storage needs.2  Typical JVMs with jits present an additional complication in 
measuring performance: the machine code corresponding to a section of code evolves and changes as 
the program runs.  Therefore, measuring the “steady state” performance of a method takes on added 
importance.  Improperly measuring start-up overhead can be mitigated by allowing code to “warm up” 
for a least ten seconds before taking timing measurements [4].  JVMs will continue to evolve.  Even in 
the same JVM lineage, the fastest running code in one version of, say, HotSpot, may not the be fastest 
running in the next release.  For example, initial versions of HotSpot may have favored a recursive 
quicksort over an otherwise equivalent iterative implementation due to limitations of the optimizer (see 
discussion in Appendix §8.3). 

3.2.2. Architectural Aspects 

Even though the Java class file is only loosely tied to the sequence of machine instructions which 
actually get executed, manually performing certain transformations could hinder rather than help 
performance.  Previous work found limited loop unrolling can improve quicksort performance [24].  
However, loop unrolling can also increase register pressure, that is the number of registers needed 
simultaneously to avoid having to store and reload values to and from memory.  A priori, architectures 
with more registers (e.g. a typical RISC processor) will favor greater loop unrolling than architectures 
with fewer registers (e.g. the x86). 

Other processor architectures and implementation features will also affect performance.  For 
example, the SPARC architecture’s register windows are an intended optimization to make function 
calls faster [31].3  However, if the hardware provided set of register contexts is exhausted, the register 
window overflow/underflow traps can be quite expensive, creating a large performance discontinuity 
between certain levels of nested calls. 

In general, counting instructions or specific operations in a processor model like MIX [13] does 
not fully capture the complexities of contemporary hardware.  The MIX-type model also did not 
correspond to the C performance model used by Bentley and McIlroy [1].  While counting the number 
of compares and swaps (or more involved models [24]) are useful guides to determining overall 
performance, current processors are deeply pipelined and most dynamically execute instructions out of 
order [7].  Therefore, the runtime behavior of processors is very complicated.  Additionally, the relative 
performance of processor and memory systems continues to widen; in contrast, many paper models 
                                                 
1 See Appendix §8.1 for a discussion of bounds check elimination. 
2 See Appendix §8.2 for a discussion of tail-call elimination 
3 Register windows impose overhead on the SPARC during systems calls (since considerable state 
needs to be saved).  Some of the benefits of register windows could be realized using link-time 
optimization techniques [30]. 
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assume all memory accesses are equally expensive.  Consequently, measuring runtimes on actual 
hardware is crucial to make fine distinctions in performance between minor algorithmic variants. 

4. Methodology 
In a number of problem domains, ranging from dense linear algebra BLAS (PHiPAC [2] and Atlas 
[32]), to FFT’s (FFTW [5]), and signal processing (SPIRAL [19]), research groups have adopted an 
“automated empirical optimization of software” (AEOS) [32] approach to finding fast implementations 
of algorithms.  That is, these groups generate numerous variants of an algorithm and then benchmark the 
variants according to some criteria.  For a given set of parameters, all the possible variants may be 
generated and run, or some heuristic may be employed to prune the search space so that a near 
“optimal” variant can be found in a reasonable length of time.  Recent work has proposed using 
statistical techniques to evaluate algorithm candidates and develop a stopping criteria [29].  The 
concerns discussed above in §3.2 and the many possible variants of the quicksort algorithm imply the 
AEOS approach might be fruitfully applied to finding a fast quicksort algorithm. 

4.1. Project Specifics 
For this project, around 1300 quicksort variants were generated and benchmarked.  In all cases the 
elements being sorted were 32-bit integers.  The benchmarks included several kinds of inputs: random 
distinct integers, random integers from a range = the size of the array, sorted, and reverse sorted data.  
All runs were done on lightly-loaded dual-processor Sun Ultra 80 workstations with 450 MHz 
UltraSPARC processors and 1 GB of RAM using version 1.4.0 of the HotSpot server compiler.4  The 
generation of quicksort variants and their benchmarking were independent operations.  In other words, 
an exhaustive search was made of the chosen design space; no intelligent search method (e.g. 
Metropolis, simulated annealing) was attempted for this project. 

4.2. Generating the Code 

4.2.1. Easing code generation 

Ideally, each of the quicksort variants would be idiomatic Java code similar to what a programmer 
would write.  However, due to the large number of variants being tested, the quicksort programs were 
partially generated automatically and expediting their generation guided several design decisions.  
Working from three basic code skeletons, textual substitution and settings of variables were used to 
create the variants.  First, basic skeletons for recursive quicksort, non-recursive without a bounded 
stack, and non-recursive with a bounded stack were written.  (While the logical structure of the three 
variants is similar, using only one or two skeletons seemed to introduce unneeded complexities.)  The 
non-recursive skeleton uses an ArrayList object defined in the Java collections library to 
implement a stack.  The non-recursive code with bounded stack allocated a fixed size array to hold the 
worst-case number of stack elements (Java arrays can have at most 231–1 elements so the size needed 
                                                 
4 HotSpot actually includes two jits, the client compiler and the server compiler, which are tuned to 
different workloads.  The client compiler starts up more quickly but does limited optimization.  While the 
server compiler has a higher start up cost and compiles code more slowly, it does more aggressive 
optimizations which result in faster code for long-running programs. 



August 15, 2003 

 6 

in the worst case is known.)  Second, conditional code was added to support each of the algorithmic 
options.  For example, as shown in §9, the following code allows insertion sort use to be turned on, 
either interspersed with quicksort or afterwards, and controls the threshold size of for insertion sort to 
be used: 
if(insertSortThreshold > 0) { 
    if(insertSortDuring) { 
 if((R-L) <= insertSortThreshold) { 
     QsUtils.insertSort(a, L, R); 
     return; 
 } 
    } 
    else { 
 if((R-L) <= insertSortThreshold) { 
     return; 
 } 
  
    } 
} 

The variables insertSortThreshold and insertSortDuring are static final class 
variables; that is, they are constant for a given quicksort variant.  Therefore, the compiler (either the 
Java to class file compiler or jit) can use that information to elide unnecessary dead code.  If 
insertSortThreshold is zero, no code for this block should be executed at runtime.  However, if 
insertSortThreshold is set to, say, 7 and insertion sort is being done during the quicksort, the 
above code is equivalent to 
if((R-L) <= 7) { 
    QsUtils.insertSort(a, L, R); 
    return; 
} 

Other design decisions are controlled in an analogous manner.  However, using this technique did 
introduce some complications.  For example, the interface to classical and three-way partitioning is 
different; classical partitioning returns a single value, the final location of the pivot, while three-way 
partitioning returns the range of values equal to the pivot. Unfortunately, due to time constraints, a 
random choice for finding the pivot value was not explored since the random pivoting would have 
required a different method signature (an extra parameter to hold the Random object generating the 
sequence of random numbers). 

4.2.2. Defining the search space 

The supported potential design space includes many of the choices discussed in §3.1: 
• Pivoting 

• leftmost element 
• median of three above a size threshold (explored range [5, 15]) 
• ninther above a size threshold (possibly with median of three for smaller sizes, (explored 

values {30, 35, 40, 45}) 
• Partitioning 

• classical 
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• three-way 
• Insertion sort 

• threshold to switch to insertion sort (explored range [5,15]) 
• if using insertion sort, whether to insertion sort during of after quicksort 

• Stack options 
• implicit stack through recursion 
• explicit stack without growth bound 
• explicit stack with growth bound 

The explored range for insertion sort was determined based on prior results in the literature.  The 
variables are not all independent.  For example, the value for the ninther threshold should be larger than 
the median of three threshold (and both must be at least as large as 9 and 3, respectively).  To limit the 
search space, as done by Bentley & McIlroy, the median of three threshold was the same as the 
insertion sort threshold if insertion sort was being used.  To further limit the search space, at least one 
multi-element pivoting technique must be used. 
 A generator program read in the three code skeletons, performed the required textual 
substitutions, and wrote out the resulting files.  The settings for a particular quicksort variants are 
mangled into the resulting file name; e.g. QS_pivotM1T7N40_partBM_isD7_recurY.java for a 
variant that used the middle element (M1) for a pivot on arrays smaller than 7 elements, switched to a 
median of three pivot between 7 (T7) and 39 elements, then switched to a ninther pivot on arrays larger 
than 40 (N40) while using Bentley and McIlroy partitioning (partBM) with insertion sort for arrays 
smaller than seven elements (isD7) and true recursion (recurY), which are the settings from [1].  
Table 2 gives the name full decoding. 

Table 2 — Name mangling used to indicate quicksort options  

Pivoting Options M1 middle element 
 L1 leftmost element 
 Tn switch to median of three for arrays at least a large as n 
 Nn switch to ninther for arrays at least as large as n 
Partitioning options partCL classical partitioning 
 partBM Bentley & McIlroy three-way partitioning 
Insertion sort is[D|A]n if n is zero, do not use insertion sort; if n is nonzero insertion 

sort for arrays at least as large as n.  D indicates insertion 
sort called during quicksort; A indicates one insertion sort 
pass after quicksort. 

Stack management recurY explicit recursion. 
 recurN explicit stack without growth bound. 
 recurS explicit stack with growth bound 

4.3. Running the Variants 
Next, a test and benchmarking harness was needed to run the variants.  Since large arrays were going 
to be used, handling memory sensibly was important.  A master copy of each benchmark test was 
initialized and then copied into another array.  Sorts were performed on this copy.  Therefore, new 
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arrays did not have to be allocated during the benchmark runs.  For every quicksort variant, each 
benchmark array was copied and sorted three times, recording the time for each sort.  The correctness 
of the sort was checked once for each (quicksort variant × benchmark array) combination.  (Only 
verifying one sorting effort instead of all three was judged sufficient since the quicksort programs do not 
contain any operations that should vary when sorting the same set of values twice.)  All the quicksort 
variants that ran to completion correctly sorted the arrays (quicksort variants that took twice as long as 
a reference time were terminated before finishing). 
 Since the benchmark programs would be running for many hours, a slow memory leak could 
adversely affect performance and skew results.  Java’s reflection facility was being used to load in the 
quicksort variants.  The compiled code for these classes could pollute memory long after it was needed; 
to avoid this possibility, a custom class loader [15] was written so that code for already run quicksort 
variants could be discarded by the garbage collector. 

4.4. Measuring Performance 
Each quicksort variant was first used to sort a 10 million element array of random integers, which took 
around ten seconds.  Using this warm-up array allows HotSpot a chance to optimize the quicksort 
method.  Next, the quicksort variant is used to sort four arrays of 7 million integers: 
• random integers between 0 and 999 
• random integers (no range constraint) 
• sorted integers 
• reverse sorted integers 
Each kind of trial was repeated three times.  The main performance metric used is the average running 
time over the twelve sorts.  A wide range of performance was observed; see Figure 2 for distribution of 
performance information. 
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5. Results 

Figure 2 — Histogram of Performance Distribution of Quicksort Variants 
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Figure 2 shows the percentage of quicksort variants that fall into a 100 millisecond performance bucket; 
e.g. about 8% of all tested variants have an average performance between 7400 and 7500 milliseconds.  
As shown in Figure 2, 90% of all quicksorts averaged between 6700 and 8900 milliseconds on the four 
array types.  Quicksorts that averaged more than 13100 milliseconds were terminated. 

The system library integer sort routine is essentially a transliteration of the Bentley and McIlroy 
C code into Java.  For comparison purposes, this existing sort routine was run several times before and 
after the quicksort variants. The resulting averages varied from 6740 to 7091 milliseconds with a mean 
of 6927.  The high and low results are within 3% of the mean average.  This indicates system 
performance over time is relatively stable.  Of all the variants tested, around 30 (2.5%) were faster than 
the average time for the system sort routine (but none were strictly faster than the fastest recorded time 
for the system sort). 

An important comparison to make is between the system sort routine and the generated 
quicksort variant with nearly equivalent options.  Of two variants similar to the system sort, 

QS_pivotM1T7N40_partBM_isD7_recurY  time: 7618 msec 
QS_pivotM1T6N40_partBM_isD6_recurY  time: 7469 msec 

the first had an average time nearly ten percent slower than the system sort routine.  This indicates a 
performance bug in the code skeleton or an inability of HotSpot to properly optimize the automatically 
generated code.  This issue merits further investigation.  Generating more idiomatic code for the three-
way partition would probably help performance here. 
 The fastest empirically found routines are all similar: 
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QS_pivotM1T15N45_partBM_isD15_recurS time: 6778 
QS_pivotM1T15N40_partBM_isD15_recurS time: 6780 
QS_pivotM1T15N35_partBM_isA15_recurS time: 6793 
QS_pivotM1T14N30_partBM_isD14_recurS time: 6812 
QS_pivotM1T14N35_partBM_isD14_recurS time: 6812 
QS_pivotM1T15N35_partBM_isD15_recurS time: 6813 

All use a large value for switching to insertion sort (15), all use three-way partitioning, and all use a 
statically allocated array to hold their stack information.  With the exception of the third variant that does 
insertion sort afterwards, the fastest routines mostly use the Bentley & McIlroy algorithm with different 
tuning settings.  These fast variants occur at the limit of the explored insertion sort range; exploring 
additional variants with larger insertion sort thresholds would be worthwhile. 
 After gathering the above data, two more quicksort variants were tried: the system quicksort 
with the best tuning options found empirically (insertion sort threshold of 15 and ninther threshold of 45) 
and the auto-generated quicksort with a three-way partition body more similar to the system quicksort.  
While the latter variant did not have improved performance, the former did yield over four runs time of 
{6519, 6544, 6576, 6636} milliseconds for an average of 6569.  In other words, with the new tuning 
settings, the modified system sort routine is over 5% faster (and the slowest time with the new tuning 
settings is faster than the fastest time with the old settings).  Therefore, even though the generated code 
variants were not consistently faster than the system sort routine, their tuning settings still have some 
predictive validity for the standard system sort implementation. 

5.1. Recursion 
Given the number of quicksort variants generated, it is worthwhile to study of the effects of varying 
single implementation options. 
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Figure 3 — Histogram of Performance by Stack Policy 
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Figure 3 is similar to Figure 2 except that number of variants in 100 millisecond performance category is 
shown instead of percentage of variants in each category. Figure 3 shows that non-recursive 
implementations with bounded stack growth are the most frequent top performers.  Regular recursion is 
next fastest and non-recursive with no stack limit is slowest, perhaps due to data structure issues.  
However, Figure 3 does not display the difference in stack management performance for otherwise 
equivalent quicksort variants (those that only differ in stack management policy).  Figure 4 shows the 
relative performance of the three options.  For a given point, the x-axis shows the benefit (difference in 
milliseconds of performance) of using no recursion and a bounded stack over using no recursion without 
a bounded stack; the y-axis shows the benefit of using recursion over using no recursion without a 
bounded stack (negative values indicate no recursion with a bounded stack was faster).  Therefore, 
among the two non-recursive options, it was always faster to use a bounded stack.  Using recursion 
was almost always faster than no recursion without a bounded stack.  With other variables held 
constant, no recursion with a bounded stack was usually the fastest policy. 
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Figure 4 — Relative Performance of Different Stack Management Policies 
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5.2. Insertion Sort: After or During? 

Figure 5 — Relative Performance of Insertion Sort During or After Quicksort 
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Sedgewick has long suggested performing one insertion sort pass after a quicksort should be faster than 
interspersed insertion sorts [23] [24].  Bentley & McIlroy found the opposite.  At least for the variants 
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examined in this project, our results agree with Bentley & McIlroy in most cases.  Figure 5 is a 
histogram of the performance differences between otherwise equivalent quicksort configurations that 
only differ on whether or not insertion short is interspersed on done afterwards.  Results to the right of 
the y-axis are situations where interspersed insertion sort is faster; this constitutes the majority of the 
trials.  Of the seven fastest quicksort variants generated, only one performed insertion short after the 
quicksorts.  Figure 6 shows that more of the faster quicksorts do insertion sort during the main sorting 
activity. 

Figure 6 — Histogram of Insertion Sort Performance  
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6. Future Work 
While faster tuning settings were found, much more work remains to be done.  For example, the cause 
of performance shortfalls in the generated variants needs to be explained.  By more tailored explorations 
of the tuning space, greater than 5% improvements might be found.  However, benchmark runs also 
need to be done on different architectures to see how universal and stable the best settings are.  Similar 
searches should be undertaking for other primitive types and more tweaks could be added to the search 
space.  Additionally, the performance of quicksort should also be compared against mergesort, 
including sophisticated mergesorts which use some of the same tricks as quicksort, such as switching to 
insertion sort for small arrays [23].  Overall, this study affirms the sound engineering of the Bentley and 
McIlroy code, although updated tuning settings are probably warranted. 
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8. Appendix 1 — Optimization Issues in Java  

8.1. Bounds check (range check) elimination 
A Java program cannot access an array outside of its defined bounds.  The most naïve implementation 
of this requirement checks to make sure each array access is in bounds; e.g.  
for(int i = 0; i < n; i++) 
  sum +=a[i]; 

would effectively get run as machine code similar to 
for(int i = 0; i < n; i++) { 
  if(i >0 and i <= a.length) 
    sum +=a[i]; 
  else 
    throw new ArrayOutOfBoundsException(); 
} 

Since these checks are costly, especially in loops, compilers aim to elide checks on every access by 
doing a few checks up front that prove the set of array accesses being considered will stay in bounds; 
this transformation is known as bounds check elimination. 

8.2. Tail-call elimination 
In many languages, when one method calls another, a new stack frame is created to hold the callee’s 
parameters, local variables, and other information.  If that last action a method takes is to call another 
method, in principle the current stack frame can be reused for the new method (since no information in 
the caller’s stack frame will ever be re-used).  For example in 
static void factorial(int n, int product) 
  // assume n >= 0 
  if (n == 0) 
    answer = product;  // write final result to external variable 
else  
    return factorial(n-1, n*product); 

the recursive call to factorial could be recognized as a tail-call by the compiler; effectively turning this 
simple recursion into loop iteration.  This transformation is required by the Scheme language so that 
recursion can be used in place of explicit looping [12]. 

Java presents a number of challenges to traditional tail-call elimination.  Besides altering control 
flow, in Java a method call can lock an object and establish new exception handlers.  Additionally, 
security in Java can be based on what methods are on the stack and a thrown exception has to be able 
to rebuild the state of the stack.  Because of these considerations, a Java program often needs 
information about the state of the method call stack.  Therefore, analyses much more involved than 
simple control flow are needed to perform legal tail-call elimination in Java.  None of the commonly 
used JVMs performs tail-call elimination. 
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8.3. On tack replacement 
HotSpot works by gathering profiling information while code is being interpreted and then, if the code is 
sufficiently “hot,” generates compiled code for that method.  The compiled code would be used the next 
time the method was entered.  However, consider the case of a long-running loop inside a method.  
When the method is first entered, it is interpreted.  As the loop runs, profiling information is gathered, 
and HotSpot generates a compiled version of the method.  However, in old versions of HotSpot, since 
the method is never left or called again, the main loop remains interpreted (although methods the loop 
calls will be compiled) [18].  Therefore, in such an environment, due to compiler artifacts, any non-
recursive version of quicksort would likely run slower than a recursive one since the latter would be 
compiled while the former would not.  Newer version of HotSpot have on stack replacement [11]; 
that is, a method running in interpreted mode can be replaced by its compiled equivalent while it 
executes, avoiding this performance anomaly. 

9. Appendix 2 — Sample Quicksort Skeleton 
// Strings between ‘@’ and ‘#’ characters are replaced with appropriate  
// values. 
// Asserts were used during development and debuggging but were not enabled  
// during benchmarking runs. 
 
package Sort; 
 
public final class QS_pivot@PVN#T@M3T#N@N9T#_part@PPN#_is@ISPN#@IST#_recurY { 
    private final static boolean randomPivot =  false; 
    private final static int  median3Threshold = @M3T#; 
    private final static int  nintherThreshold = @N9T#; 
    private final static int     insertSortThreshold = @IST#; 
    private final static boolean insertSortDuring = @ISPV#; 
    private final static boolean partitionClassical = @PPV#; 
     
    static { 
 assert( ((median3Threshold == 0) || (median3Threshold >= 3)) && 
  ((nintherThreshold == 0) || (nintherThreshold >= 9)) &&  
  ((median3Threshold > 0 && nintherThreshold > 0)? 
   (median3Threshold < nintherThreshold):true ) && 
  (insertSortThreshold >= 0) ); 
    } 
 
    // prevent instantiation 
    private QS_pivot@PVN#T@M3T#N@N9T#_part@PPN#_is@ISPN#@IST#_recurY() {}; 
 
    public static void sort(int[] a) { 
 if (partitionClassical) 
     quicksort(a, 0, a.length-1); 
 else { 
     quicksort(a, 0, a.length-1, new Pair()); 
 } 
 
 if(insertSortThreshold != 0 && !insertSortDuring) { 
     QsUtils.insertSort(a, 0, a.length-1); 
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 } 
    } 
     
    static void quicksort(int a[], int L, int R) { 
 int p; 
 if(R <= L)   
     return; 
 
 // code to handle insertion sort options 
 if(insertSortThreshold > 0) { 
     if(insertSortDuring) { 
  if((R-L) <= insertSortThreshold) { 
      QsUtils.insertSort(a, L, R); 
      return; 
  } 
     } 
     else { 
  if((R-L) <= insertSortThreshold) { 
      return; 
  } 
   
     } 
 } 
 
 // code to handle partition options 
 if (median3Threshold == 0 && nintherThreshold == 0) { 
     p = QsUtils.partitionCL(a, L, R, QsUtils.findPivot@PVN#(a, L, R)); 
 } 
 else if (median3Threshold > 0) { 
     if(nintherThreshold == 0) { // median of 3 only 
  p = QsUtils.partitionCL(a, L, R,  
     (((R - L) > median3Threshold) 
      ? QsUtils.findPivotM3(a, L, R) 
      : QsUtils.findPivot@PVN#(a, L, R))); 
     } 
     else { // both median and ninther are being used 
  int diff = (R - L); 
  int pivot; 
  assert(diff >= 0); 
 
  if(diff < median3Threshold) 
      pivot = QsUtils.findPivot@PVN#(a, L, R); 
  else if( diff >  nintherThreshold) 
      pivot = QsUtils.findPivotN9(a, L, R); 
  else 
      pivot = QsUtils.findPivotM3(a, L, R); 
   
  p = QsUtils.partitionCL(a, L, R, pivot); 
     } 
 } 
 else { // nintherThreshold must be non-zero 
     assert(nintherThreshold > 0); 
     p = QsUtils.partitionCL(a, L, R,  
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        (((R - L) > nintherThreshold) 
         ? QsUtils.findPivotN9(a, L, R) 
         : QsUtils.findPivot@PVN#(a, L, R))); 
      
 } 
 
 quicksort(a, L, p-1); 
 quicksort(a, p+1, R);      
    } 
 
    static void quicksort(int a[], int L, int R, Pair pair) { 
 int p; 
 if(R <= L)   
     return; 
 
 // code to handle insertion sort options 
 if(insertSortThreshold > 0) { 
     if(insertSortDuring) { 
  if((R-L) <= insertSortThreshold) { 
      QsUtils.insertSort(a, L, R); 
      return; 
  } 
     } 
     else { 
  if((R-L) <= insertSortThreshold) { 
      return; 
  } 
   
     } 
 } 
 
 // code to handle partition options 
 if (median3Threshold == 0 && nintherThreshold == 0) { 
     // return new partition regions in pair 
     QsUtils.partitionBM(a, L, R, QsUtils.findPivot@PVN#(a, L, R), pair); 
 } 
 else if (median3Threshold > 0) { 
     if(nintherThreshold == 0) { // median of 3 only 
  QsUtils.partitionBM(a, L, R,  
        (((R - L) > median3Threshold) 
         ? QsUtils.findPivotM3(a, L, R) 
         : QsUtils.findPivot@PVN#(a, L, R)), pair); 
     } 
     else { // both median and ninther are being used 
  int diff = (R - L); 
  int pivot; 
  assert(diff >= 0); 
 
  if(diff < median3Threshold) 
      pivot = QsUtils.findPivot@PVN#(a, L, R); 
  else if( diff >  nintherThreshold) 
      pivot = QsUtils.findPivotN9(a, L, R); 
  else 
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      pivot = QsUtils.findPivotM3(a, L, R); 
   
  QsUtils.partitionBM(a, L, R, pivot, pair); 
     } 
 } 
 else { // nintherThreshold must be non-zero 
     assert(nintherThreshold > 0); 
     QsUtils.partitionBM(a, L, R,  
    (((R - L) > nintherThreshold) 
     ? QsUtils.findPivotN9(a, L, R) 
     : QsUtils.findPivot@PVN#(a, L, R)), pair); 
      
 } 
 
 quicksort(a, L, pair.L); 
 quicksort(a, pair.R, R);      
    } 
} 
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