
1

FLECKmarks
Measuring Floating Point Performance using a FulL IEEE Compliant Arithmetic BenchmarK

Joseph D. Darcy and David Gay
{darcy,dgay}@CS.Berkeley.EDU

1. Abstract
The floating point standard IEEE 754 is widely implemented, but many of its capabilities are not well supported by
software or hardware. Programming languages provide no standard method to access IEEE 754 features, and the
hardware performance is uneven, some operations being several orders of magnitude slower under certain
conditions. We propose language extensions to span IEEE 754, measure the current level of hardware support, and
propose “FLECK,” a new suite of benchmarks using IEEE 754 features. The measurements are made on four
recent architectures and compared to the SPEfp_base95 ratings of the same systems.

2. Introduction
Since the birth of high level programming languages with FORTRAN in 1950’s, numerical computation on
floating point numbers has been an important concern of computer users. Building on FORTRAN, later
languages, such as ALGOL 60, provided more formal descriptions of syntax and semantics of valid programs.
However, due to the variety of architectures of the time:

No exact arithmetic will be specified, however, and it is indeed understood that different
hardware representations may evaluate arithmetic expressions differently. The control of the
possible consequences of such differences must be carried out by the methods of numerical
analysis [12].

Therefore, the same source program compiled and run on different architectures produced different output
due to varying range, precision, and other properties of a particular floating point format. In such a heterogeneous
environment, a reasonable approach to provide cross-architecture portability is for a programming language to
limit expressiveness to operations common to all (or most) contemporary architectures.

In order to eliminate the diversity of floating point formats at the time, the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754-1985) was proposed and accepted. Among the standard’s design goals were
to

Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this
standard and possesses adequate capacity. When restricted to a declared subset of the standard,
these programs should produce identical results on all conforming systems [2].

Since its introduction, IEEE 754 has become universally available on all significant microprocessors for
PC’s and workstations (Intel x86 line and clones, Motorola 68000, Power PC, HP PA RISC, Sun SPARC, SGI
MIPS, and DEC Alpha, among others). IEEE 754 sports numerous features advantageous to the numerical
analyst, if somewhat esoteric to the more casual programmer. Although the standard’s features of directed
rounding, subnormal numbers, arithmetic on infinities and NaNs (Not a Number), and floating point exception
handling are all useful and are all implemented on conforming processors, these features are not supported in
current programming languages. Programming language support for IEEE 754 was discussed before the standard
was adopted [5]. Even if not employed directly, many users could benefit from more efficient libraries written
using IEEE 754’s advanced capabilities [3]. Due to the ubiquity of IEEE 754, programming languages should now
support IEEE 754 specific features not available under other floating point standards. IEEE 754 was designed to
allow sophisticated numerical algorithms, programming languages should not hinder that effort by lack of
expressiveness.

Manipulating floating point values are fundamental operations in most languages; convenient to express
and understood by the compiler. Therefore, while accessing IEEE 754 features via a library call interface is
possible, full integration into a language allows for better ease of use and potentially faster execution times due to
more precise program analysis and optimization. Due to the popularity and wide use of the C programming

2

language, the proposed language extensions discussed assume C as the language base (although the extensions are
applicable to other languages as well).

While the processors mentioned above all support IEEE 754, the quality of that support varies
considerably. The ease of access to the IEEE functionality is in practice a language and operating system issue, this
aspect is covered by our proposed language extensions. The differences in speed can be compared with a standard
benchmark. The floating point part of the SPEC95 CPU benchmark [15], derived from actual programs, provides a
popular way of comparing the floating point speed of different processors. However, the codes used in SPEC95
only exercise “traditional” floating point features.

To get a better view of the relative performance of the floating point implementations available today, we
have measured the speed of the basic operations specified in the IEEE standard and collected some realistic
benchmark programs that exploit the special IEEE 754 features. We call this benchmark suite FLECK, for FulL
IEEE 754 Compliant Arithmetic BenchmarK . From the results on these benchmarks, we obtain a ‘FLECKmark’,
which we compare to the SPECfp95 results.

We have conducted these measurements on four modern processors: a 64 MHz HP Precision Architecture
7100LC, a 167 MHz UltraSPARC-1, a 250 MHz Alpha 21164 and a 200 MHz Pentium Pro. The Alpha is
particularly interesting as it has two levels of IEEE support: fast but partial, and full but slow (with software
support). Our measurements all require the latter mode, while DEC’s official SPEC95 results use the former.

Section 3 contains an overview of the IEEE 754 standard and of our proposed language extensions.
Section 4 presents our benchmarks and discusses their results. It ends with a comparison of the algorithms used in
the FLECK suite with equivalent algorithms that do not use the IEEE 754 features. Section 5 discusses related
work and presents our conclusions.

3. Programming Language Extensions for IEEE 754 Arithmetic

3.1 Brief Description of an IEEE 754 Machine
Before discussing the language extensions or benchmarks, the features of IEEE floating point need to be briefly
summarized. The standard [2] discusses these features in much greater detail and should be referred to for more
complete explanations.

The general structure of an IEEE 754 floating point number is

− ⋅ ⋅ −1 2 0 1 2 1a f c h
s E

pb b b b. K

where s is the sign bit (either 0 or 1), E is an exponent between Emin and Emax, and each bi is either 0 or 1.
Additional values include a positive and a negative infinity, and at least one NaN.† NaNs are used to represent
invalid values, such as 0/0 or the square root of a negative number. The exact sizes and ranges of E and p (the
number of bits in the significand) are given in the standard for two formats; single precision (32 bits total, p=24
bits, E=8 bits, Emax =127, Emin =-126) and double precision (64 bits total, p=53 bits, E=11 bits, Emax =1022, Emin =-
1022). Constraints are also given for two other formats, single extended and double extended. Double extended
(at least 79 bits total, p ≥ 64 bits, E ≥ 15 bits, Emax ≥ 16383, Emin ≥ -16382) has hardware support on the x86 and
68000 lines of processors. Numbers where b0=0 are called subnormals (or denormals). Subnormals are encoded
with a special exponent value not between Emin and Emax. Therefore, since all “normal” numbers have b0=1, b0 is
not explicitly stored in the single or double format and is thus known as the implicit bit. In the single and double
formats, a number has a unique encoding. Special exponent values outside of Emin and Emax are used to encode
positive and negative infinity, positive and negative zero, and NaN values.

The standard defines addition, subtraction, multiplication, division, square root and comparison
operations. Rules are given for propagating NaNs and arithmetic on infinities, see the standard for details. The
value of an operation can be affected by the current rounding mode. By default, the IEEE floating point number
closest to the infinitely precise real result is returned. Other rounding modes return values rounded toward 0,
toward -∞, or toward +∞. Each operation can, as a side effect, set one of five sticky bits representing the
conditions division by zero, overflow, underflow, inexact (rounding), and invalid (operation resulting in a new

† There are actually two classes of NaNs, signaling NaNs and quiet NaNs. Signaling NaNs are not widely used,
are not used in the language extensions, and will not be further discussed in this document.

3

NaN such as 0/0, if a NaN is an input argument the invalid flag is not set by that operation). These bits are sticky
in the sense that they remain set until cleared by the user, which implies the bits can be tested and manipulated by
the user. Alternatively, instead of having the flags set, for each of the five conditions, the programmer can specify
a trap hander. If this trapping mode is being used, the trap handler functions as a subroutine, returning a value for
the operation which caused the exception. The trap handler must be able to determine a variety of information
about the machine state when the exception occurred, such as what kind of operation was being performed.

3.2 Language Extensions
We propose four language extensions for IEEE arithmetic: handling of special numbers, rounding mode
specification, new comparison operators and exception support.

3.2.1 Special Numbers
There are three new constants: nan , infinity and -0 (which is slightly different from 0 in IEEE 754). There
are a number of standard functions to classify values (isnan() , finite() , etc.) and break them into their
components (copysign() , etc.).

As shown in section 4.1 the relative performance of processors on IEEE 754 special values ranges over
several orders of magnitude. Subnormals generally have the greatest penalty for use, and could cause significant
performance degradation on some processors. Processors with slow subnormals provide a faster mode of operation
where small values are instead flushed to zero. The Alpha has the additional property that the mere possibility of
special values necessitates running in a degraded mode.

Programmers need to be able to specify exactly what policies a program uses so that bit for bit
repeatability is possible across processors. However, when performance concerns are paramount, a slightly
different answer is acceptable if it comes more quickly. To allow both portability and performance, the
programmer can declare a refinement of the types of floating point values which may occur. Essentially, the
programmer specifies which special values must be handled correctly. A programmer specifies either to use
subnormals, to use flush to zero, or to use whichever policy is faster on that architecture. A promise of only having
traditional floating point values would allow the Alpha’s fast execution mode to be used.

3.2.2 Rounding modes
The standard defines four rounding modes which affect the result of an arithmetic operation: to closest (the
default), toward 0, toward +∞, and toward -∞.

In the IEEE model, the rounding mode can be changed dynamically at runtime. To provide structured
access to this feature, a new enumerated type, rounding_mode , and a new declaration round , are introduced.
The round declaration takes an expression of type rounding_mode and sets the current rounding mode
accordingly, the rounding mode influences the results of subsequent arithmetic operations. The previous rounding
mode is restored once the scope is exited. The default rounding mode is round to nearest.

Rounding modes are useful for implementing interval arithmetic and other types of error analysis. Since
the rounding mode must be switched frequently during such computations, syntactic sugar in the form of new
operators are provided to control the rounding mode at a very fine granularity. The rounding operators, such as +^
to add and round toward +∞, specify a particular static rounding mode, which can lead to more efficient code
generation on certain architectures, such as the Alpha. A static rounding mode operator is not affected by round
declarations.

3.2.3 Comparison Operations
The various comparison operations (equal, not equal, less than, less than or equal, greater than, greater than or
equal) are familiar and easily understood for traditionally available floating point values. However, NaN values
that do not compare against other numbers; a NaN is neither greater than, less than, nor equal to any value,
including itself. A NaN is unordered compared to other numbers. Existing comparisons against NaN (except for
== and !=) set the invalid flag. Thus, the inclusion of NaN introduces subtleties into the comparison operators,
a b a b< ≡ ¬ ≥()does not hold under IEEE arithmetic. To provide comparison operators that are the
complements of one another, a new set of comparison operators are needed, comparison operators that are true if

4

the unordered relation holds between the two arguments. These new operators, indicted by a “?” appended to the
existing operator (e.g. >=?), also do not set the invalid flag when comparing against NaN. The unordered relation
is checked with the “??” operator.

3.2.4 Floating Point Exceptions
The standard calls for user level access to the “sticky” flags that are set as a side effect of numerical operations.
Although each flag can have a (user-specified) software trap enabled or disabled, we do not allow users to write
their own trap handlers. Instead, traps are disabled and the standard’s default behavior is used.

The value of the condition flags may be checked using the construct in Figure 1. After the computation
completes the on structure checks the status flags set during the computation and runs the appropriate code. If
more than one flag is set, the first matching clause listed is run. All the variable bindings in the computation block
are available in the on clauses.

{
computation
}
on
{
overflow {...}
underflow, invalid {...}
div_zero, inexact {...}
}

Figure 1—Sample syntax for checking status flags

4. Comparing IEEE 754 Implementations
We first measure the speed of the basic IEEE operations to get an accurate view of the costs of the various features
on each architecture. We then present our FLECK benchmark suite which uses these IEEE features. This suite is
mostly based on existing programs, so is not written with the language extensions of Section 3.2. We then compare
the performance of two of the FLECK benchmarks to equivalent algorithms that do not use the IEEE features.

4.1 Basic Arithmetic Operations
To compare the IEEE implementations of the four processor implementations, we measure the speed of the basic
arithmetic operations +, *, /, and square root on all classes of IEEE numbers: normal numbers, infinities, NaNs,
and subnormals. We do not measure subtraction or comparisons, as these should behave like addition. We also
measure the cost of changing rounding modes.

We benchmark each operation in a pipelinable and non-pipelinable case‡: the pipelinable case repeats the
same operation each time, while the non-pipelinable case makes each operation dependent on the previous one. We
thus get a measurement of the throughput and latency of each of these operations.

The measurements are made by executing each operation 1 billion times, with the loop containing the
instruction in hand-written assembly code. Each instruction is executed 10 times within each loop iteration, the
times reported include the loop overhead. In practice, this loop overhead is hidden inside the latency of the floating
point operations and therefore does not affect the timing results. When the operation is comparatively slow, only 10
million are executed. The reported times are the sum of “user” and “system” time, as returned by the operating
system.

Table 1 through Table 4 report the results in nanoseconds and cycles per operation for each processor.
Figure 2 through Figure 5 presents the time per operation graphically. The results for the Alpha 21164 in Table 4
includes times for a “fast” mode which acts only on normal numbers when full IEEE support is disabled.

‡Square root was not measured in a pipelined case since it’s implementation generally not pipelined. Nor was
square root measured for the Alpha’s fast mode since it is implemented via a function call.

5

Table 1—Times for floating point operations on a 64 MHz HPPA 7100LC

Normal Infinity NaN Subnormal
Operation ns cycles ns cycles ns cycles ns cycles
pipelined add 15.75 1.0 15.78 1.0 13950 893 14614 935
add 32.24 2.0 32.07 2.0 14222 910 15526 994
pipelined multiply 31.38 2.0 31.83 2.0 14503 928 22725 928
multiply 31.38 2.0 31.83 2.0 14503 928 22725 1454
pipelined divide 240.09 15.4 79.85 5.1 13438 860 31427 2011
divide 240.42 15.4 79.79 5.1 13481 863 31298 2003
square root 239.17 15.3 80.25 5.1 13512 865 31702 2029

Table 2—Times for floating point operations on a 200 MHz Pentium Pro

Normal Infinity NaN Subnormal
Operation ns cycles ns cycles ns cycles ns cycles
pipelined add 7.04 1.4 576.3 115.3 636.6 127.3 7.02 1.4
add 15.05 3.0 576.3 115.3 575.7 115.1 15.06 3.0
pipelined multiply 10.04 2.0 565.7 113.1 590.9 118.2 10.03 2.0
multiply 10.23 2.0 506.5 101.3 531.5 106.3 10.25 2.0
pipelined divide 185.73 37.2 643.5 128.7 610.9 122.2 185.73 37.1
divide 185.95 37.2 556.7 111.3 551.7 110.3 185.96 37.1
square root 341.51 68.3 555.8 111.2 550.6 110.1 341.52 68.3

Table 3—Times for floating point operations on a 167 MHz UltraSPARC

Normal Infinity NaN Subnormal
Operation ns cycles ns cycles ns cycles ns cycles
pipelined add 6.02 1.0 6.01 1.0 6.00 1.0 15773 2629
add 18.02 3.0 18.03 3.0 18.03 3.0 15923 2654
pipelined multiply 6.01 1.00 6.01 1.0 6.01 1.0 43034 7172
multiply 17.91 3.0 17.9 3.0 17.90 3.0 38162 6360
pipelined divide 132.17 22.0 48.06 8.0 48.05 8.0 72874 12145
divide 132.17 22.0 48.06 8.0 48.06 8.0 79179 19197
square root 132.14 8.0 48.06 8.0 48.05 8.0 94157 15693

Table 4—Times for floating point operations on a 250 MHz Alpha 21164

Normal (fast) Normal Infinity NaN Subnormal
Operation ns cycles ns cycles ns cycles ns cycles ns cycles

pipelined add 4.05 1.0 22.72 5.7 3250 880 3423 856 6483 1621

add 16.22 4.0 23.13 5.8 7000 1750 6858 1715 13345 3336

pipelined multiply 4.48 1.1 22.92 5.7 4425 1106 4342 1085 8872 2218

multiply 16.12 4.0 24.68 6.2 8882 2220 8615 2154 17384 4337

pipelined divide 130.12 32.5 144.55 36.1 9753 2438 9477 2369 31728 7932

divide 149.98 37.5 157.37 39.3 9840 2460 9588 2397 31825 7956

square root — — 358.57 89.3 308 77 290 73 731 183

6

Cycles Times for Basic Arithmetic Operations on a 64 MHz PA-RISC

1

10

100

1000

10000

pipelined add pipelined multiply pipelined divide square root

Type of Operation

C
yc

le
s

Normal

Infinity

NaN

Subnormal

Figure 2—Information from Table 1 presented graphically

Cycles Times for Basic Arithmetic Operations on a 200 MHz PPro

1

10

100

1000

pipelined add pipelined multiply pipelined divide square root

Type of Operation

C
yc

le
s

Normal

Infinity

NaN

Subnormal

 Figure
3—Information from Table 3 presented graphically

7

Cycle Times for Basic Operations on a 167 MHz UltraSPARC

1

10

100

1000

10000

100000

pipelined add pipelined multiply pipelined divide square root

Type of Operation

C
yc

le
s

Normal

Infinity

NaN

Subnormal

Figure 4—Information from Table 2 presented graphically

Cycle Times for Basic Operations on a 250 MHz Alpha 21164

1

10

100

1000

10000

pipelined add pipelined multiply pipelined divide square root

Type of Operation

C
yc

le
s

Normal

Infinity

NaN

Subnormal

Fast

Figure 5—Information from Table 4 presented graphically

From these results, we can briefly summarize the weaknesses of each processor. The HPPA 7100LC has
slow NaNs and subnormals, on the order of 1000 cycles per operation. The UltraSPARC runs all values except
subnormals at full speed; unfortunately, when subnormals are used they are dramatically slower, with some
operations taking over 10,000 cycles to complete. Finally, the Pentium Pro runs normals and subnormals equally
well but suffers a penalty when operating on NaNs or infinities.

The stratification of performance on the Pentium Pro surprised us; we expected the Pentium Pro to have
fast hardware support for the full IEEE standard. The slowdown is not as drastic as on the other processors, only
one hundred cycles instead of thousands, but this can still impact performance, as the later benchmarks indicate.
We surmise operations on NaNs and infinities are implemented in the Pentium Pro’s microcode. To find out if the

8

slowdown of NaNs and infinities on the Pentium Pro is a new property of that member of the x86 lineage, we
collected timings on a Pentium 166 and a 486 DX4 100. The Pentium has the same general performance profile as
and Pentium Pro; NaNs and infinities were slow and subnormals were as fast as normal numbers. The Pentium
Pro has somewhat better pipelining than the Pentium. The 486 does not pipeline floating point operations (an
addition takes ten cycles), but multiplication and addition on NaNs and infinities are only about four times slower
than for other values, taking about forty cycles total.

All the times on the Alpha, except for fast mode, are measured with a trap barrier between every floating
point operation. While the architecture does not require quite that many barriers, this is the strategy used by DEC’s
compilers. This measurements reflect the performance that an application compiled with IEEE support enabled
can expect. An attempt to reduce the number of trap barriers to one per basic block, which should be possible
according to the Alpha architecture manual [13], produced speeds comparable to the “fast” results for normal
numbers, but also gave incorrect results for the non-pipelined addition of subnormal numbers, which is rather
unfortunate.

On machines implementing them in hardware, divides and square roots of infinities and NaNs are
actually faster than normal values, presumably because the hardware aborts the operation. Similarly, the Alpha’s
software square root implementation allows it to have reasonably fast results for infinities, NaNs and subnormals,
though it is substantially slower (both in time and cycles) than the HPPA 7100LC and UltraSPARC.

The cost of trapping to software to implement floating point operations varies significantly between the
HPPA 7100LC, UltraSPARC and 21164 architectures and operating systems, with HP doing the best job, and Sun
the worst. The Pentium’s apparent trap to microcode is much faster in terms of cycles than any of the software
traps by at least one order of magnitude.

To measure the cost of changing rounding modes, we cycle through each of the four rounding modes,
doing one addition each time. We do 1 billion non-data-dependent additions. The results are reported in Table 5, in
nanoseconds and cycles per change of rounding mode and addition.

Table 5—Times to change rounding modes and perform an addition on various processors

Processor Time to Change Rounding Mode and Perform an Addition
ns cycles

HPPA 7100LC 189.71 12.65
Pentium Pro 82.19 16.44
UltraSPARC 114.13 19.02
Alpha 21164
(allow dynamic)

52.70 13.18

Alpha 21164
(statically known)

23.32 5.83

The cycle-time results are all comparable, with the UltraSPARC being somewhat slower. The Alpha
allows static specification of all rounding modes except one, which must be accessed via the dynamic rounding
mode. In cases where static and dynamic rounding are mixed, the slower time is more realistic.

4.2 FLECK
This section presents the result of our program-level benchmarking. We first present the results of running the
SPECfp95 benchmark suite and the Linpack [4] 1000x1000 benchmark to measure the performance of traditional
floating point operations on our machine and compiler combinations. We then present our benchmarking suite,
“FLECK,” and report the results. We end with a comparison of all benchmark results.

We ran the SPECfp_base95 benchmark on each of our machine/compiler combinations so as to obtain
SPEC numbers valid for our configurations.* All our benchmarks were run in multi-user UNIX configurations.

* On the Pentium Pro and Alpha, the benchmark 145.wave5 did not execute properly when compiled under the
highest level of optimization. Therefore, it alone was compiled at the next lowest level of optimization. This
procedure violates the rules for SPEC95 fp base which stipulate that all benchmarks must be compiled with the

9

On each architecture, all our benchmarks (except for the synthetic ‘poly’ benchmark) use the same compiler and
compiler options. For the Alpha, we measure SPECfp_base95 with and without full IEEE support. The results are
presented in Table 6. In each table we also include the official SPEC result for the machines closest to those we
used. We normalize the SPEC numbers with respect to the HPPA 7100LC, our slowest machine.

Table 6—SPEC95 Float Base Information

Processor HPPA 7100LC Pentium Pro UltraSPARC Alpha 21164
Frequency 64 MHz 200 MHz 167 MHz 250 MHz
Compiler HP f77 GNU g77 Sun f77 DEC f77
Compiler options +03

+0nofastaccess
+03 -xO4

-xdepend
-tune ev5
-non_shared
-om
-O5
-ieee_with_no_inexact

(not used for fast mode)
Operating System HP-UX 9.07 Linux 2.0.0 Solaris 2.5.1 OSF1 V3.2
Measured
SPEC95 FP Base

2.41 3.21 5.2 2.87
(fast) 7.05

Reported
SPEC95 FP Base

2.66 5.99 8.45 8.39

Ratio of
Measured to
Reported

.91 .54 .61 .34
 (fast) .84

Ratio of
Measured to
HPPA 71000LC

1.00 1.33 2.16 1.19
(fast) 2.93

Table 7 presents the MFlop rate on the Linpack 1000x1000 double precision benchmark, and the speedup
relative to the HPPA 7100LC.

Table 7—Linpack double precision 1000x1000 performance

Processor Linpack 1000 x 1000 Mflops Speedup from HPPA 7100LC
HPPA 7100LC 9.344 1.00
Pentium Pro 13.09 1.40
UltraSPARC 20.37 2.18
Alpha 21164 fast 21.3 2.28
Alpha 21164 20.7 2.22

We wished to find benchmarks to measure the following aspects of the IEEE standard: special numbers
(infinity, NaN, subnormals), exception handling, and rounding modes. Since we do not intend to measure the
effects of the memory hierarchy or other non-processor system components, our benchmarks and datasets are fairly
small. Our three benchmarks cover all these features except subnormals, we were unable to find an algorithm
which depended on their presence for correct functioning (in fact, we found one, SDRWAVE [9], that depended on
their absence). Two of our benchmarks are based on existing FORTRAN code, and one is written in C.

The two FORTRAN benchmarks are modified LAPACK [1] routines to get higher performance from
exploiting IEEE features. They come from work of J. Demmel and X. Li [3].

same set of flags. However, to better compare to the Linpack and FLECK results, we did not degrade the
optimization levels of the other nine benchmarks due to buggy optimizers on one program. Additionally, when
compiling the Alpha in IEEE compliant mode, we used five flags, four for performance and one to specify IEEE
compliance. Using more than four flags also violates SPEC95 base rules, but we wanted to get the highest base
performance possible when running without IEEE support, so we used the four available flags and added the
additional flag when using IEEE support.

10

The first benchmark, ‘rcond’, estimates the reciprocal of a matrix’s condition number. Infinities and
NaNs may arise during the computation, these are detected using the IEEE sticky exception flags. Rcond appears
twice in the results, once with input that causes exceptions, once with input that does not.

‘Eigen’ is a FORTRAN program that computes the eigenvalues of a symmetric tridiagonal matrix.
Infinities may arise during the computation, but these do not represent an “error” as they do in rcond. We also use
two different inputs with eigen, one that causes infinities to appear and one that does not. The times reported for
eigen and rcond are the time to execute the algorithm once, but the times were measured by executing them 100 or
1000 times to get more precise results.

The final benchmark, ‘poly’, computes an upper and lower bound for a polynomial at a given input by
performing the same calculation under different rounding modes. This is a small synthetic benchmark. Both upper
and lower bounds are calculated in each loop iteration, therefore, the rounding mode is changed in the inner loop.
Another method to perform the calculation would be to run the code once to get the lower bound, change the
rounding mode, and run again to get the upper bound. The changes to the rounding mode were done with inline
assembly code to avoid the excessive cost of calling the vendor supplied functions to change the rounding mode.
Table 8 shows the speedup achieved by using assembly code; these time are indicative of the times an IEEE aware
compiler could generate. The Alpha assembly code was modified to use the explicit rounding modes allowed by
that architecture (the static rounding mode row in Table 8). Since the static rounding mode is encoded as part of
the instruction, the function call interface on the Alpha only implements fully dynamic rounding. Not surprisingly,
if full dynamic rounding is used in the assembly code, the benefit of assembly code is lessened.

Table 8—Impact of using assembly code instead of function calls to manipulate rounding modes

Processor Time using function call
(sec)

Time using assembly
(sec)

Speedup

HPPA 7100LC 223.22 29.28 7.62
Pentium Pro 22.84 11.35 2.01
UltraSPARC 28.87 14.09 2.04

Alpha 21164
Static rounding 52.84 8.56 6.17
Fully dynamic rounding — 20.58 2.56
Fast mode, static — 1.93 27.38

Table 9 summarizes the execution times for these benchmarks. The speedups are given relative to the
HPPA 7100 LC. The FLECKmark rating is the geometric mean of the speedups. Figure 6 presents these results in
graphical form.

Table 9—Performance on FLECK

HPPA 7100LC Pentium Pro UltraSPARC Alpha 21164
Benchmark time

(ms)
speedup time

(ms)
speedup time

(ms)
speedup time

(ms)
speedup

rcond with
exceptions

1834.1 1 157.13 11.67 14.16 129.56 1423.64 1.29

rcond, with no
exceptions

88.40 1 40.04 2.21 40.12 2.20 30.72 2.88

eigen with
infinities

180.86 1 167.54 1.08 116.50 1.55 131.16 1.38

eigen without
infinities

181.45 1 130.09 1.39 116.98 1.55 129.65 1.40

poly 29280 1 11350 2.58 14090 2.08 8566 3.42

FLECKmarks 1 2.51 4.27 1.85

11

Performance on FLECK

1

10

100

1000

rcond
(exceptions)

rcond (no
exceptions)

eigen
(infinities)

eigen (no
infinities)

poly FLECKmarks

Benchmark

R
at

io
 to

 S
lo

w
es

t P
er

fo
rm

er

64 MHz PA RISC

200 MHz PPro

167 MHz UltraSPARC

250 MHz Alpha

Figure 6—Performance on individual FLECK benchmarks and resulting FLECKmark rating

The performance differences on the input to rcond that has exceptions, and therefore infinities and NaNs,
are very significant. This shows that the cost of not having hardware support for these numbers can be very high:
the UltraSPARC is more than a hundred times faster than the HPPA 7100LC when exceptions occur, only two
times faster when they do not. The Pentium Pro is an intermediate case here: as it’s overhead for infinities and
NaNs is much lower, it does a lot better than the 21164 or the HPPA 7100LC, but much worse than the
UltraSPARC. When exceptional values do not occur, the 21164 is the fastest machine on this benchmark.

The eigen benchmark shows that some algorithms can rely on the support for IEEE features (infinities in
this case) to get higher performance (see Section 4.3), without requiring that these features be implemented
efficiently. Basically, eigen only generates a few infinities, so the performance of infinity arithmetic does not affect
the result.

The results on the poly benchmark reflect the varying cost of changing the rounding mode, as shown in
Table 5. Figure 7 compares the FLECKmarks to the SPECFP95 and Linpack results discussed above. It also shows
the SPECFP95base results for machines similar to those we used in our tests.

The processors with the highest FLECKmark are the UltraSPARC and Pentium Pro, though this is mostly
due to the exceptional input to the rcond benchmark. Except for this case, the 21164 does quite well on all
benchmarks, even with full IEEE support enabled. All processors except the HP have a FLECKmark to
normalized SPEC95 rating greater than one (see Figure 7), meaning that the HP performs worse on FLECK than
its SPEC95 rating alone would lead one to believe.

12

Relative Benchmark Performance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

64 MHz PA
RISC

200 MHz
PPro

167 MHz
UltraSPARC

250 MHz
Alpha

Processor Type

R
at

io
 to

 S
lo

w
es

t P
er

fo
rm

er

Reported SPEC95 Base FP

SPEC95 Base FP

Linpack 1000d

FLECK 0.1

Figure 7—Relative processor performance on various benchmarks

4.3 Performance Benefits of IEEE
This section compares the performance of the algorithms used in the rcond and eigen benchmarks to the original
algorithms from LAPACK used on the same inputs. It is thus a partial repetition of the results of [3] on more
recent machines.

Table 10 lists the speedups for both benchmarks and both inputs when compared against the LAPACK
version of the algorithm (which do not use any IEEE features). The IEEE features are accessed with function calls,
so will be less efficient than in a language incorporating our proposed extensions.

Table 10—Ratio of execution time of algorithm not using IEEE to algorithm using IEEE

rcond eigen
Processor exceptions input no exceptions input infinities input no infinities input
HPPA 7100LC 0.44 2.15 1.71 1.71
Pentium Pro 0.64 2.00 1.48 2.92
UltraSPARC 72.28 1..88 1.52 1.48
Alpha 21164 0.86 2.00 1.40 1.43

Even when many infinities and NaNs arise, the performance of the rcond IEEE algorithm is still
competitive with the alternative LAPACK implementation (which has to do scaling to ensure the exceptions do not
occur). When the hardware supports these features, the IEEE algorithms are always much faster than the originals.

13

5. Conclusions

5.1 Related Work
Other groups are also concerned with providing IEEE 754 floating point support in languages. The C9X group is
working on incorporating floating point into the C standard [14]. Their proposal takes a less integrated approach
than we recommend, relying on many macros and #defines . For example, instead of new constants, NaN and
infinity values in C9X are returned by NAN and INFINITY macros. In C9X, the functionality of the new
comparison operators discussed in Section 3.2.3 are implemented with function calls like isgreaterequal() .
The working draft of the C++ standard [17] has facilities to query many properties of a floating point type relevant
to IEEE floating point numbers. The proposed libraries for the functional language Haskell 1.3 include an optional
library LibIEEE_Float that has rounding arithmetic operators and comparison operators similar to the
structures in Sections 3.2.2 and 3.2.3.

In [8], W. Kahan discusses the features and implications of the IEEE 754 floating point standard as well
as proposing language mechanisms to access those features. J. Hauser in [6] and [7] provides detailed examples
justifying the usefulness of exception handling in floating point computations. Different language interfaces to
exceptions are discussed in [7].

J. Demmel and X. Li measured the differing computation speeds on IEEE special values in [3].

5.2 Observations
Orders of magnitude difference in the speed of handling normal and special values exist on current
microprocessors. The set of values computed fast is inconsistent across processors: the Pentium Pro does
subnormals at full speed while all others take hundreds to thousands of cycles, the HPPA does infinity quickly but
not NaNs while the UltraSPARC does both infinities and NaNs at full speed. These large differences are reflected
in the FLECKmarks, which do not have the same ratios as the SPECfp_95 ratings. Providing hardware arithmetic
on infinities and NaNs does not seem a priori hard, and can make a large performance difference in some
algorithms (rcond). We therefore think that future processors should have this support.

Other algorithms are mostly insensitive to the performance of the basic operations (eigen), which shows
that the IEEE features can always be useful. They should therefore have language support.

6. Acknowledgments
The authors would like to thank W. Kahan for his advice and discussion on matters related to this project,
including recommending the poly benchmark. Alex Aiken provided feedback on the floating point language
design issues. Xiaoye Li also deserves thanks for advice and assistance using the benchmarks from [3].

14

7. References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Gennbaum, S.
Hammerling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide, Release
1.0 SIAM, Philadelphia, 1992.

[2] ANSI/IEEE, New York, IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985 ed.,
1985

[3] James W. Demmel and Xiaoye Li, “Faster Numerical Algorithms via Exception Handling”, IEEE
Transactions on Computers, Vol 43, NO 8, August 1994, pp. 983-992.

[4] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User’s Guide. SIAM,
Philadelphia PA, 1979.

[5] Richard J. Fateman, “High-Level Language Implications of the Proposed IEEE Floating-Point
Standard,” ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April
1982, pp. 239-257.

[6] John R. Hauser, Handling Floating-Point Exceptions, ACM Transactions on Programming
Languages and Systems, Vol. 18, No. 2, March 1996, pp. 139-174.

[7] John R. Hauser, Programmed exception handling. M.S. Thesis, University of California,
Berkeley, CA 1994.

[8] William Kahan, Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic, http://HTTP.CS.Berkeley.EDU/~wkahan/ieee754status/ieee754.ps

[9] David Kahaner, “Benchmarks for ‘real’ programs,” SIAM News, November 1988.

[10] PA–RISC 1.1 Architecture and Instruction Set Reference Manual, Third Edition, Hewlett-
Packard Company, 1996.

[11] Pentium Pro Family Developer’s Manual, Intel Corporation, 1996.

[12] Naur, et al, “Report on the Algorithmic Language ALGOL 60

[13] Richard L. Sites, Richard T. Witek, Alpah AXP Architecture Reference Manual, Second Edition,
Digital Press, 1995.

[14] Jim Thomas, C9X Floating Point, WG14/N595 X3J11/96-059 (Draft 9/12/96)

[15] Standard Performance Evaluation Corporation, http://www.specbench.org/

[16] David L. Weaver and Tom Germond, ed., The SPARC Architecture Manual, version 9, Prentice
Hall, 1994.

[17] Working Paper for the Draft Proposed International Standard for Information Systems—
Programming Language C++, Doc No: X3J16/95-0087

