
1

by
Joseph D. Darcy

and
William Kahan

Computer Science Division,
University of California, Berkeley

email: {darcy, wkahan}@CS.Berkeley.EDU
WWW: http://www.cs.berkeley.edu/~{darcy, wkahan}

Analysis of
“Proposal for Extension to Java Floating Point Semantics, Revision 1”



2

Summary of PEJFPS
• PEJFPS has two goals:

• allow some access to extended precision where it is supported by hardware

• ameliorate Java’s floating point performance implications on the x86
(double rounding on underflow problem)

• These goals are accomplished by allowing (in certain contexts) float and
double local variables and parameters to be stored as and operated on as
extended format floating point values.

• New class and method qualifiers widefp and strictfp control contexts
where extended formats can and cannot be used.

• Existing Java source code and class files are subject to the revised semantics
(the default is implicit widefp instead of implicit strictfp).

• Only operand stack, local variables, parameters, and method return values can
use extended formats.  There are no extended format arrays or object fields.

• The virtual machine is granted wide latitude in choosing when and if to use
extended formats.



3

Background on the JVM

× returning a value from a method

× passing a parameter

× generated by a floating point operation

× local variables

• arrays (allocated on the heap)

• fields in objects (allocated on the heap)

• static class fields

• constants in the constant pool

Where do floating point values in the JVM come from?



4

Data movement in the JVM

• All data movement must go through the stack

• No direct path from, say, an array element to an
object field

arrays

objects

static data

constant pool

local variables

stack

M

M

ldc

aload/astore

getfield/putfield

getstatic/putstatic

load/store

method return/
parameter passing

add, mul,
etc.

×

×



5

A change in philosophy

• For both intrinsic and practical reasons, Java code does not live up to it
“write once, run anywhere” slogan

• But, Java is much more predictable than other contemporary
languages.  The sizes of the types are given, expression evaluation
order is specified, etc.

• PEJFPS removes Java’s predictability for floating point

Java allows application developers to write a program
once and then be able to run it everywhere on the Internet.

Except for timing dependencies or other non-determinisms
and given sufficient time and sufficient memory space, a
Java program should compute the same result on all
machines and in all implementations.

—Preface to The Java™ Language Specification



6

Compiler Latitude
Under PEJFPS, the compiler can decide to use or not use extended
precision at its discretion.  From PEJFPS,

Section 5.1.8, Format Conversion
Within an FP-wide expression, format conversion allows an implementation,
at its option, to perform any of the  following operations on a value:

• float → float extended and float extended → float

• double → double extended and double extended → double

Conclusions:

•  extended formats can be used inconsistently at the compiler’s whim

•  fp, femax, and femin (PEJFPS §4.2.3) can misleadingly indicate
extended formats are in use when in actuality they are not



7

A Legal Perversion

Even FORTRAN 77 and C guarantee
 width(float) ≤ width(double).

PEJFPS does not.

Can the multiply overflow?

static double mul(float f1, float f2)
{ double d1, answer;
  d1 = f1;
  answer = d1 * f2;
  return answer;
}

Can the assignment overflow?



8

Potential Surprises

• When run on an x86, when will dot return a NaN (strict
floating point) and when will dot return 1.0 (wide floating
point)?

When will extended precision by used?

a[] = {Double.MAX_FLOAT, -Double.MAX_FLOAT, 1.0}
b[] = {Double.MAX_FLOAT,  Double.MAX_FLOAT, 1.0}

widefp static double dot(double a[], double b[]){
  double sum;
  for(int i = 0; i <= a.length; i++)
      sum += a[i] * b[i];

  return sum;
}



9

VM = interpreter + JIT

• Why do the first 5 calls to dot print NaN and the next 5 print 1.0?

• Why does the last call to dot print NaN?

// arrays a and b and method dot from previous slide

widefp static double dot(double a[], double b[])
{...}

public static void main(String[] args)
{
  double a[] = {Double.MAX_FLOAT, -Double.MAX_FLOAT, 1.0};
  double b[] = {Double.MAX_FLOAT,  Double.MAX_FLOAT, 1.0};

  for(int i = 0; i < 10; i++)
    System.out.println(dot(a, b));
  Other code...
  System.out.println(dot(a, b));
}



10

A problem for compiler writers?

• Floating point format returned by  x.foo might be unknowable at compile time

• This is tolerable on the x86 due to the register architecture

• Problematic on machines with orthogonal support for 3 floating point formats

• Solution:  promote all stack values to the same format

Want to compile the following to native code:

class A {
  strict fp double foo(){...}
}

class B extends class A {
  widefp double foo(){...}
}

static double bar() {
  A x = (random?new B():
                new A());
  return x.foo();  //does strict or wide foo get called?
}



11

Do cry over spilt registers

• faster to register spill 64 bit double values instead of 80 bit double
extended values is (lower latency instruction and less memory
traffic)

• breaks referential transparency

Will breaking an expression into pieces change the value
computed?

// widefp context
double a, t1, t2;
a = BigExpression1 * BigExpression2;
foo(); // foo could modify global vars, but doesn’t
t1 = BigExpression 1;
t2 = BigExpression 2;
if(a == t1 *t2)
  ...



12

Using extended precision arrays

R A X X

HL

N
M
M
M

O

Q
P
P
P

=
L

N
M
M
M

O

Q
P
P
P

◊
L

N
M
M
M

O

Q
P
P
P

-
L

N
M
M
M

O

Q
P
P
P

◊

• Eigenproblem refinement requires a residual



13

Everything old is new again

• Sun III compilers used extended precision for anonymous
values but had no language type corresponding to double
extended

• Lack of a language type caused problems since the
(doubled extended) value of an expression assigned
to a double variable could be used in place of the
rounded double value stored in the variable

Those who cannot remember the past are
condemned to repeat it.

—George Santayana
The Life of Reason, vol. 1,
Reason in Common Sense

• Many Java ideas have been used
before, bytecode (UCSD P-code),
garage collection (LISP et. al.),
strong static typing, etc.



14

Miscellaneous Problems
• In widefp contexts gradual is underflow not required (PEJFPS p. 30)

⇒ widefp variables might be able to represent fewer floating point
values than corresponding strictfp ones

• Can fused mac be used? How would this be indicated to the
programmer?

• The widefp default can break existing Java programs that rely on
Java’s strict floating point semantics (admittedly such programs are in
the minority, although codes such as doubled-double will break)

• PEJFPS doesn’t appear to follow the stated Java evolution plans,
changing the minor revision number in the class file, etc.

• What about library support?  Printing out and reading in extended
values?  JNI support, Bitwise conversion? ...



15

Another Way
• Two goals:

• Grant access to extended precision where available

• Allow the x86 to run Java’s floating point as fast as the floating
point of other languages

• Two constraints:
• Java and the JVM can be modified but

• Keep the language predictable

• Speed and extended precision are separate issues:
• The speed problem can be removed by allowing only the

significand to be rounded (giving float and double values
stored in registers greater exponent range).  Alternatively, the
current practice of storing after each floating point operation can
be canonized.

• A separate type can be used to refer to double extended



16

indigenous and anonymous
• The Borneo language proposal addresses the issues dealt with by

PEJFPS

• Borneo adds a third primitive floating point type, indigenous.  The
indigenous type corresponds to the largest IEEE 754 format that
executes directly on the underlying processor (80 bit double
extended on the x86, double elsewhere).

• indigenous  values and variables, can be used in all the usual ways,
local variables, object fields, arrays, parameters, etc.

• Borneo has a new declaration, anonymous FloatingPointType.  The
FloatingPointType indicates the compiler should widen all narrower
floating point operands to be of that type (pre-ANSI C style evaluation).
Therefore, anonymous indigenous allows gives good hardware
utilization at the highest precision supported by the hardware.

• This proposal maintains predictability at the cost of more noticeable
JVM modifications (to support indigenous).



17

What can you do?

Sun claims to want feedback for their open process.
Send your thoughts before September 15, 1998 to:
javasoft-spec-comments@eng.sun.com



18

Self-promotion and References
For more information on Borneo:
http://www.cs.berkeley.edu/~darcy/Borneo 

For a discussion of Java’ floating point support:
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

References
Jerome Coonen, “A Note On Java Numerics,”
http://www.validgh.com/numeric-interest/numeric-interest.archive/numeric-interest.9701

Roger A. Golliver, “First-implementation artifacts in Java™”

James Gosling, Bill Joy, and Guy Steele, The Java™ Language Specification,
Addison-Wesley, 1996.

“Proposal for Extension of Java™ Floating Point Semantics, Revision 1,” May  1998
http://java.sun.com/feedback/fp.html

Java

Borneo


