
Guardian Procedure Calls Reference Manual—425682-001
-1

FP_IEEE_DENORM_GET_ Procedure

FP_IEEE_DENORM_GET_ Procedure
Summary
The FP_IEEE_DENORM_GET_ procedure reads the IEEE floating-point
denormalization mode.

Syntax

Parameters

DeNorm output

INT

The denormalization control mode.

DeNorm can have the following values:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
fp_ieee_denorm FP_IEEE_DENORM_GET_ (void);

FP_IEEE_DENORMALIZATION_ENABLE Denormalization in IEEE
floating point allows for
greater precision in the
representation of numbers
that are very close to zero.
This is the standard mode.

FP_IEEE_DENORMALIZATION_DISABLE The nonstandard mode.
When denormalization is
disabled, fractions that are
too small to be represented in
standard IEEE form are
represented as zero, causing a
loss of precision.

Guardian Procedure Calls Reference Manual—425682-001
-2

FP_IEEE_DENORM_SET_ Procedure

FP_IEEE_DENORM_SET_ Procedure
Summary
The FP_IEEE_DENORM_SET_ procedure sets the IEEE floating-point
denormalization mode.

Syntax

Parameters

NewMode input

INT

The denormalization control mode.

NewMode can have the following values:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
void FP_IEEE_DENORM_SET_(fp_ieee_denorm new_mode);

FP_IEEE_DENORMALIZATION_ENABLE Denormalization in IEEE
floating point allows for
greater precision in the
representation of numbers
that are very close to zero.
This is the standard mode.

FP_IEEE_DENORMALIZATION_DISABLE The nonstandard mode.
When denormalization is
disabled, fractions that are
too small to be represented
in standard IEEE form are
represented as zero, causing
a loss of precision.

Guardian Procedure Calls Reference Manual—425682-001
-3

FP_IEEE_DENORM_SET_ Procedure

Consideration
Operations with denormalization disabled can cause problems by causing a gap
around zero in the distribution of values that can be represented. With
denormalization disabled, the results will not comply with the IEEE standard and
might not match results on any other system.

Guardian Procedure Calls Reference Manual—425682-001
-4

FP_IEEE_ENABLES_GET_ Procedure

FP_IEEE_ENABLES_GET_ Procedure
Summary
The FP_IEEE_ENABLES_GET_ procedure reads the IEEE floating-point trap enable
mask. A set bit (value of one) means that the trap for that particular exception is
enabled. A zero bit means that it is disabled.

Syntax

Parameters

Traps input

INT

The 32-bit trap enable mask.

Mask bit values of Traps are:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
fp_ieee_enables FP_IEEE_ENABLES_GET_(void);

FP_IEEE_ENABLE_INVALID Trap on FP_IEEE_INVALID
exception.

FP_IEEE_ENABLE_DIVBYZERO Trap on FP_IEEE_DIVBYZERO
exception.

FP_IEEE_ENABLE_OVERFLOW Trap on FP_IEEE_OVERFLOW
exception.

FP_IEEE_ENABLE_UNDERFLOW Trap on FP_IEEE_UNDERFLOW
exception.

FP_IEEE_ENABLE_INEXACT Trap on FP_IEEE_INEXACT
exception.

Guardian Procedure Calls Reference Manual—425682-001
-5

FP_IEEE_ENABLES_GET_ Procedure

Considerations
• A constant named FP_IEEE_ALL_ENABLES is equivalent to a combination of the

mask bits to enable traps for all the exceptions.

• In some cases, the conditions that cause a trap are slightly different from the
conditions that cause the corresponding exception flag to be set.

• When a trap happens, a SIGFPE signal is raised, and the corresponding signal
handler is called. The SIGFPE signal handler typically does a function frame trace
showing the point of failure, and then abends the process. The SIGFPE signal is not
allowed to return to the point where the trap happened.

• Trap handling is an optional part of the IEEE floating-point standard. See
FP_IEEE_EXCEPTIONS_GET_ Procedure on page -10 and
FP_IEEE_EXCEPTIONS_SET_ Procedure on page -12 for an alternative to using
traps.

• The compiler optimizer might reorder operations within a local routine and cause
different results from the FP_ IEEE status procedures than intended. To work around
this, place arithmetic operations in a separate function. The compiler cannot
optimize across function boundaries, so the FP_IEEE status procedure will be called
in the intended order.

Guardian Procedure Calls Reference Manual—425682-001
-6

FP_IEEE_ENABLES_SET_ Procedure

FP_IEEE_ENABLES_SET_ Procedure
Summary
The FP_IEEE_ENABLES_SET_ procedure sets the IEEE floating-point trap enable
mask. A set bit (value of one) enables a trap for the particular exception. A zero bit (the
normal value) disables that trap.

Syntax

Parameters

NewMask input

INT

The 32-bit traps flag.

Traps flag values of Traps are:

Considerations
• When you enable traps, you will not get a trap from a left-over status; you will trap

only from operations that happen after you enable the traps.

• See Considerations on page -5 for more considerations for this procedure.

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
void FP_IEEE_ENABLES_SET_(fp_ieee_enables new_mask);

FP_IEEE_ENABLE_INVALID Trap on FP_IEEE_INVALID
exception.

FP_IEEE_ENABLE_DIVBYZERO Trap on FP_IEEE_DIVBYZERO
exception.

FP_IEEE_ENABLE_OVERFLOW Trap on FP_IEEE_OVERFLOW
exception.

FP_IEEE_ENABLE_UNDERFLOW Trap on FP_IEEE_UNDERFLOW
exception.

FP_IEEE_ENABLE_INEXACT Trap on FP_IEEE_INEXACT
exception.

Guardian Procedure Calls Reference Manual—425682-001
-7

FP_IEEE_ENABLES_SET_ Procedure

Example
#include <kfpieee.h>

void TrapsEnableExample(void) {

 FP_IEEE_ENABLES_SET_
 (FP_IEEE_ENABLE_INVALID |
 FP_IEEE_ENABLE_DIVBYZERO|
 FP_IEEE_ENABLE_OVERFLOW
);
}

This sets traps on the FP_IEEE_INVALID, FP_IEEE_DIVBYZERO, and
FP_IEEE_OVERFLOW exceptions.

Guardian Procedure Calls Reference Manual—425682-001
-8

FP_IEEE_ENV_CLEAR_ Procedure

FP_IEEE_ENV_CLEAR_ Procedure
Summary
The FP_IEEE_ENV_CLEAR_ procedure sets the floating-point environment
(consisting of the rounding mode, the exception flags, the trap enables, and the
denormalization mode) back to its initial values. The initial values are as follows:

Syntax

Parameters

SavedEnv input

INT

The current floating-point environment is saved here before it is set to its initial
values.

Consideration
FP_IEEE_ENV_CLEAR_ and FP_IEEE_ENV_RESUME_ are for use by a process,
such as a signal handler, a clean-up routine, or a procedure that needs to tolerate
being called with any possible values in the floating-point status and control. They
are not for use by interrupt handlers.

Example
#include <kfpieee.h>

void TotalEnvExample(void) {
 fp_ieee_env previousEnv;
 previousEnv = FP_IEEE_ENV_CLEAR_(); /*restore initial env*/
 Do_Computation();
 FP_IEEE_ENV_RESUME_(previousEnv) /*restore previous env*/
}

Rounding mode Round to nearest or nearest even value

Exception flags No exceptions encountered (zeroes)

Trap enables All floating-point traps disabled

Denormalization Denormalized enabled

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
fp_ieee_env FP_IEEE_ENV_CLEAR_(void);

Guardian Procedure Calls Reference Manual—425682-001
-9

FP_IEEE_ENV_RESUME_ Procedure

FP_IEEE_ENV_RESUME_ Procedure
Summary
The FP_IEEE_ENV_RESUME_ procedure restores the floating-point environment (the
rounding mode, the exception flags, the trap enables, and the denormalization mode) to
the values it had before calling FP_IEEE_ENV_CLEAR_.

Syntax

Parameters

SavedEnv input

INT

The previous floating-point environment that was saved by the last call to
FP_IEEE_ENV_CLEAR_.

Considerations
See Consideration on page -8 for a description of considerations for this procedure.

Examples
See Example on page -8 for an example of the use of this procedure.

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
void FP_IEEE_ENV_RESUME_(fp_ieee_env savedEnv);

Guardian Procedure Calls Reference Manual—425682-001
-10

FP_IEEE_EXCEPTIONS_GET_ Procedure

FP_IEEE_EXCEPTIONS_GET_ Procedure
Summary
The FP_IEEE_EXCEPTIONS_GET_ procedure reads the IEEE floating-point exception
mask.

Syntax

Parameters

Exceptions input

INT

The 32-bit exception flags.

Exception flag values of Exceptions are:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
fp_ieee_exceptions FP_IEEE_EXCEPTIONS_GET_(void);

Value Cause

FP_IEEE_INVALID Arithmetic calculations using either positive or
negative infinity as an operand, zero divided by
zero, the square root of -1, the rem function with
zero as a divisor (which causes divide by zero),
comparisons with invalid numbers, or impossible
binary-decimal conversions.

FP_IEEE_DIVBYZERO Computing x/0, where x is finite and nonzero.

FP_IEEE_OVERFLOW Result too large to represent as a normalized
number.

FP_IEEE_UNDERFLOW Result both inexact and too small to represent as
a normalized number.

FP_IEEE_INEXACT Result less accurate than it could have been with
a larger exponent range or more fraction bits.
Most commonly set when rounding off a
repeating fraction such as 1.0/3.0. Also set for
underflow cases and some overflow cases, but
not for division by zero.

Guardian Procedure Calls Reference Manual—425682-001
-11

FP_IEEE_EXCEPTIONS_GET_ Procedure

Considerations
• In addition to the above enumerated constants, a constant named

FP_IEEE_ALL_EXCEPTS is equivalent to a combination of all the exception bits.

• Once exception flags are set, they stay set until explicitly reset.

• More than one exception flag can result from a single floating-point operation.

Example
#include <kfpieee.h>

void Example(void) {

 FP_IEEE_EXCEPTIONS_SET_(0); /* clear exceptions */
 DoComputation(); /* floating-point computation */
 if(FP_IEEE_EXCEPTIONS_GET_() &
 (FP_IEEE_INVALID|FP_IEEE_OVERFLOW|FP_IEEE_DIVBYZERO)
)

 printf("Trouble in computation! \n");
}

Guardian Procedure Calls Reference Manual—425682-001
-12

FP_IEEE_EXCEPTIONS_SET_ Procedure

FP_IEEE_EXCEPTIONS_SET_ Procedure
Summary
The FP_IEEE_EXCEPTIONS_SET_ procedure sets the IEEE floating-point exception
mask.

Syntax

Parameters

NewFlags input

INT

The 32-bit exception flags.

Exception flag values of NewFlags are:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
void FP_IEEE_EXCEPTIONS_SET_
 (fp_ieee_exceptions new_flags);

FP_IEEE_INVALID Arithmetic calculations using either positive or
negative infinity as an operand, zero divided by
zero, the square root of -1, the rem function with
zero as a divisor (which causes divide by zero),
comparisons with invalid numbers, or impossible
binary-decimal conversions.

FP_IEEE_DIVBYZERO Computing x/0, where x is finite and nonzero.

FP_IEEE_OVERFLOW Result too large to represent as a normalized
number.

FP_IEEE_UNDERFLOW Result both inexact and too small to represent as
a normalized number.

FP_IEEE_INEXACT Result less accurate than it could have been with
a larger exponent range or more fraction bits.
Most commonly set when rounding off a
repeating fraction such as 1.0/3.0. Also set for
underflow cases and some overflow cases, but
not for division by zero.

Guardian Procedure Calls Reference Manual—425682-001
-13

FP_IEEE_EXCEPTIONS_SET_ Procedure

Considerations
See Considerations on page -11 for a description of considerations for this procedure.

Examples
See Example on page -11 for examples of the use of this call.

Guardian Procedure Calls Reference Manual—425682-001
-14

FP_IEEE_ROUND_GET_ Procedure

FP_IEEE_ROUND_GET_ Procedure
Summary
The FP_IEEE_ROUND_GET_ procedure reads the current rounding mode.

Syntax

Parameters

RoundMode input

INT

The 32-bit rounding mode code.

Rounding mode values returned by this procedure are:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
p_ieee_round FP_IEEE_ROUND_GET_(void);

FP_IEEE_ROUND_NEAREST Round toward the representable
value nearest the true result. In cases
where there are two equally near
values, the "even" value (the value
with the least-significant bit zero) is
chosen (the standard rounding
mode).

FP_IEEE_ROUND_UPWARD Round up (toward plus infinity).

FP_IEEE_ROUND_DOWNWARD Round down (toward minus infinity).

FP_IEEE_ROUND_TOWARDZERO Round toward zero (truncate).

Guardian Procedure Calls Reference Manual—425682-001
-15

FP_IEEE_ROUND_SET_ Procedure

FP_IEEE_ROUND_SET_ Procedure
Summary
The FP_IEEE_ROUND_SET_ procedure sets the current rounding mode.

Syntax

Parameters

NewMode input

INT

The 32-bit rounding mode code.

The rounding mode can have one of the following values:

Note. This procedure is supported in the G06.06 release and all subsequent G-series releases.

#include <kfpieee.h>
void FP_IEEE_ROUND_SET_(fp_ieee_round new_mode);

FP_IEEE_ROUND_NEAREST Round toward the representable value
nearest the true result. In cases where
there are two equally near values, the
"even" value (the value with the
least-significant bit zero) is chosen
(the standard rounding mode).

FP_IEEE_ROUND_UPWARD Round up (toward plus infinity).

FP_IEEE_ROUND_DOWNWARD Round down (toward minus infinity).

FP_IEEE_ROUND_TOWARDZERO Round toward zero (truncate).

Guardian Procedure Calls Reference Manual—425682-001
-16

FP_IEEE_ROUND_SET_ Procedure

