
A102 Review Exam 3 Solutions

2004-November-03

1. (a) As you get to larger and larger distances from the Sun (greater A), the gravitational force on a
planet goes down. This means that the amount of motion needed to balance that gravity goes
down, leading to lower planetary orbit speeds; between A and the speed, you can determine P .
Notice that P goes up faster than proportional to A, whereas if the speed were constant (no
conflict of gravity and motion) P would be proportional to A.

(b) We discovered most extrasolar planets by looking at the Doppler effect of the star being pulled
around a very slight amount by its planet. More motion means more Doppler effect, which means
it would be easier to find planets. You’re going to get the most motion where the gravitational
force of the planet is strongest, and that will happen for a massive planet closest to the star.

(c) Evidence for dark matter comes from rotation curves of galaxies. The stars and gas at large
distances are moving too fast for the amount of gravity that should be there from the matter we
can see. There must be additional (dark) matter to provide the additional gravity necessary to
hold those stars and gas in to the galaxy.

(d) This is where the conflict of gravity and motion breaks down. Dark Energy has a negative

gravitational effect, so rather than being in conflict with motion, gravity is making there be more
and more motion all the time, leading to an accelerating expansion.

2. (a) One possibility is that the Universe is finite in extent. Eventually, you’ve seen far enough that
you’ve seen past all of the stars. (This is true for our Galaxy, but turns out not to be true for the
Universe.) The second possibility is that the Universe hasn’t been around forever. Because light
takes time to travel, it can only have gone so far in a Universe of a finiate age. This means that
eventually you get to a distance great enough that light from stars at that distance won’t have
reached us yet.

(b) First is the finite age— the Big Bang gives us a beginning to the Universe. The second is the
cosmological redshift. As you look farther back in time, the Universe has expanded more since
the photons you see were emitted. This redshift moves them to longer wavelengths, and therefore
lower energies. This reduces the energy you would detect from a very distant star or galaxy.

3. (a)

λmax =
2.9× 107 Å K

T

λmax =
2.9× 107 Å K

2.728 K

λmax = 1.06× 107 Å

(b)

1 + z =
Size Now

Size Then

z =
Size Now

Size Then
− 1

z = 1089− 1

z = 1088
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(c)

λobs − λorig

λorig

= z

λobs

λorig

− 1 = z

λobs

λorig

= z + 1

λorig =
λobs

z + 1

λorig =
1.063× 107 Å

1089

λorig = 9, 800 Å

(d)

λmax =
2.9× 107 Å K

T

T =
2.9 × 107 Å K

λmax

T =
2.9 × 107 Å K

9762 Å

T = 2970 K

Notice that this is less than the temperature of the Sun’s surface!

(e) We’re now detecting the light that’s just reaching us from the emission of the CMB. Because light
moves at a constant speed, that means that all of that light we’re just now seeing must be coming
from the same distance. (Anything emitted closer passed us by long ago, and anything emitted
farther hasn’t reached us yet.) All the points that are the same distance from us is a spherical
shell around us— or a spherical “surface.”

(f)

L = A σ T 4

L = (1 m2)(5.67 × 10−8 W

m2K4
)(2970)4

L = 4.4 × 106 W

L¯ = (1 m2)(5.67 × 10−8 W

m2K4
)(5800)4

L¯ = 6.4 × 107 W

A square on the surface of the Sun is 15 times more luminous than a square of the same size on
the surface of last scattering was at time of emission. (Stars are hot!)
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(4) (a) If the orbits are approximately Keplerian, we can use Kepler’s laws. Specifically:

P 2 =

(

4π2

G M

)

A3

In this case, M is the mass at the center, and is what we want. Solve this equation for M :

M =

(

4π2

G

) (

A3

P 2

)

Stick in the right numbers. The hardest part is making sure we got all the Units right.

M =

(

4π2

6.67× 10−11 m3 kg−1 s−2

)(

(8 × 103 pc)3

(250 × 106 year)2

) (

3.086× 1016 m

1 pc

)3 (
1 year

3.156× 107 s

)2

M = 1.4 × 1041 kg

(

1 M¯

2.00× 1030 kg

)

M = 1.4× 1041 kg = 7.2× 1010 M¯

(b) The volume is:

V =
4

3
π R3 =

4

3
π (8 × 103 pc3)

(

3.086× 1016 m

1 pc

)3

V = 6.3 × 1061 m3

(“It’s a big galaxy, Mr. Scott.” Identify the speaker for 10−7 points of extra credit.)

The density is then:

1.4× 1041 kg

6.3× 1061 m3
= 2.3 × 10−21 kg/m3

(c) 0.2 stars per pc3 with each star of mass half of a M¯ gives you a mass density in stars of

0.1 M¯/pc3

(d)

(

2.27× 10−21 kg

m3

) (

1 M¯

2.00× 1030 kg

) (

3.086× 1016 m

1 pc

)3

0.034 M¯/pc3

AARGH! I thought I’d fixed this before I posted the test. Guess not. This points out how bad
the approximation is. . . . The real density is something between 0.1 and 0.5 M¯/pc3. You were
supposed to get a bigger number (something like 0.14M¯/pc3) in this part, and then comment
that the extra was dark matter. This number wasn’t going to be 10x bigger than the number
from (c), however, and you were supposed to then comment that dark matter is more spread out
in the Galaxy than stars, so here relatively close in there are more stars compared to dark matter
than there are farther out.

But since the numbers didn’t work out, you couldn’t do any of that.

Oops.

Still, hopefully you can understand what we did with Kepler’s third law above.
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5. (a)

z =
λobs − λ0

λ0

=
v

c

v = c

(

λobs − λ0

λ0

)

v =

(

3.00× 105 km

s

) (

6694.0 Å − 6562.8 Å

6562.8 Å

)

v = 6.0 × 103 km/s

(b)

v = H0 d

d =
v

H0

=
5997 kms−1

71 kms−1 Mpc−1

d = 84 Mpc

(Yes, I will give you H0 on the front of the test if you need it. Sorry about that for the review
test.)

(c) We have LC = 1, 200 L¯, and LV = 55 L¯.

BC =
LC

4π dC
2

BV =
LV

4π dV
2

Divide the two equations to get:

BC

BV

=
(LC) (4π dV

2)

(LV ) (4π dC
2)

Cancel the 4π on the top and bottom, and plug in:

BC

BV

=
(1, 200 L¯)(7.8 pc)2

(55 L¯)(84.5 × 106 pc)2

BC

BV

= 1.9 × 10−13

So, no, we couldn’t detect this with our telescope.

(d) The time was travelling for a time t = d/c, where d is the distance and c is the speed of light.
This time is:

t =
d

c
=

(

84.5× 106 pc

1 lyr yr−1

) (

3.26 lyr

1 pc

)

t = 275 million years
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During this time, the galaxy will have moved an additional distance away ∆d = vt

∆d =

(

5997
km

s

)

(275× 106 yr)

(

3.156× 107 s

1 yr

)

∆d = 5.20× 1019 km

(

10−6 Mpc

3.086× 1013 km

)

∆d = 1.69 Mpc

The percentange increase is then:

∆d

d
=

1.69 Mpc

84.5 Mpc
= 0.020

The Universe’s size increased by 2% in the last 275 million years. It doesn’t seem to be expand-

ing very fast after all!

Note that there was a much faster way to do this problem. Above, we had calculated a z; the
answer wasn’t written out, but that was the first thing we did to solve part (a). We would have
gotten z = 0.02. Since we know 1 + z =Size Now/Size Then, then we know that the Universe is
1.02 times the size it was when the light was emitted, for a 2% increase in size.

6. (a)

(b) Their physical separation, in units of AU or km or similar. Then he could use an equivalent of
the P 2 = (4π2/GM) A3 law to figure out the masses. (We haven’t actually gone through this
calculation in class, so I won’t make you do it.)

(c) The angular separation, and the distance to the binary star system. The latter could be measured
with parallax, if the binary system is close enough.
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