Astronomy 102: Examination 3

Potentially useful constants and formulae

$$R_{\odot} = 6.96 \times 10^{5} \text{ km} \qquad \qquad E = mc^{2}$$

$$M_{\odot} = 1.99 \times 10^{30} \text{ kg} \qquad \qquad \lambda f = c \quad f = \frac{c}{\lambda} \quad \lambda = \frac{c}{f}$$

$$L_{\odot} = 3.8 \times 10^{26} \text{ W} \qquad \qquad E = hf$$

$$c = 3.00 \times 10^{8} \text{ m s}^{-1} \qquad \qquad L = A\sigma T^{4}$$

$$h = 6.626 \times 10^{-34} \text{ J s}^{-1} \qquad \qquad L = (4\pi R^{2}) \sigma T^{4}$$

$$1 \text{ pc} = 3.26 \text{ lyr} \qquad \qquad B = \frac{L}{4\pi d^{2}}$$

$$1 \text{ pc} = 3.086 \times 10^{16} \text{ m} \qquad \qquad z = \frac{\Delta \lambda}{\lambda} = \frac{\lambda_{\text{obs}} - \lambda_{\text{orig}}}{\lambda_{\text{orig}}}$$

$$1 \text{ AU} = 1.496 \times 10^{11} \text{ m} \qquad \qquad z = \frac{v}{c} \quad (\text{for } v \ll c)$$

$$\pi \text{ rad} = 180^{\circ} \qquad \qquad A = \frac{b}{d} \quad (\text{for } A \ll 1, A \text{ in rad})$$

$$3,600 \text{ arcsec} = 60 \text{ arcmin} = 1^{\circ} \qquad \qquad d = \frac{1}{p} \quad (d \text{ in pc}, p \text{ in arcsec})$$

$$d_{\text{Vega}} = 7.76 \text{ pc}$$

$$L_{\text{Vega}} = 130 L_{\odot}$$

Age of Solar System: 4.6×10^9 years

Age of Universe: 13.7×10^9 years

Lifetime of 1 M_{\odot} star (type G on main sequence): 10^{10} yr (10 Gyr) Lifetime of 3 M_{\odot} star (type A on main sequence): 4×10^8 yr (400 Myr) Lifetime of 8 M_{\odot} star (type B on main sequence): 4×10^7 yr (40 Myr)

"High-mass" star (will go supernova): $M > 8 M_{\odot}$