
A311 Final, Solo Component

Due Friday, December 16

Do not even look at this until you have turned in the group portion of the final!!

You are allowed to use Spitzer, Osterbrock, a table of physical constants (such as the Particle Data
Booklet, or a scientific calculator with constants and the ability to convert units), the knowledge that
1 eV = 1.60×10−12 ergs, your class notes, and any problem sets and solutions I have posted on the course
web page.Do not use any other references during this final.

Do not discuss this portion of the final with anybody other than Rob or Rachel until after the due date.

1. Fun with Optical Depths.

(a) Consider a gas cloud of number density nH = 1 cm−3. At a given wavelength, the optical depth
through the whole gas cloud is τν(initial). If you compress the gas cloud so that its final density
is twice its initial density, how does the total optical depth through the cloud τν(final) compare
to τν(initial)? (Express your answer as a ratio τν(final)/τν(final).)

(b) Consider the standard interstellar extinction law (shown in class on or around September 23).
Is the optical depth between us and the center of the galaxy, taking into account all of the dust
twixt here and there, greater or lower at λ = 2µm than it is at λ = 6000Å?

(c) Consider a star with a uniform slab of gas between it and the observer. The star has a blackbody
spectrum at temperature T1 = 4000 K, and the slab radiates with a blackbody spectrum at
temperature T2 = 10, 000 K. The observer detects light at 6000 Å.

T  = 10,000 K2

T  = 4000 K1

Observer

d

At some thickness, the specific intensity Iν of the light detected from the slab will equal the
specific intensity of light from the star behind it. At this thickness, what is the optical depth of
the slab τν to light at ν = 6000 Å? (Hint: τν ≪ 1).

. . . continued on next page. . .
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2. There are two ways dust can redden starlight. First, it absorbs/scatters more efficiently in bluer light
than it does in redder light, so a greater fraction of redder light from the star shines through the dust.
Second, if the dust itself emits, it is usually at a lower temperature than a typical star, and hence
has a blackbody peak further to the red; this emission then adds fractionally more light to redder
wavelengths than it does to bluer wavelengths.

Sometimes, you can disentangle this using color-color diagrams. Consider a specific situation: dust at
400 K. Consider the three standard near-infrared broadband filters J , H , and K, which are roughly at
wavelengths λJ = 1.2µm, λH = 1.7µm, and λK = 2.2µm.

For reference, here are the shapes of the blackbody spectrum;

Bν =
2hν3/c2

exp(hν/kT )− 1

Bλ =
2hc2/λ5

exp(hc/λKT )− 1

(a) What is the peak wavelength λmax where Bλ reaches its maximum for the dust’s blackbody
spectrum?

(b) What is the ratio of flux ratios :
(

Fλ(J)
Fλ(H)

)

(

Fλ(H)
Fλ(K)

)

for this blackbody? (Evaluate this ratio numerically.)

(c) What is J-H and H-K for this blackbody, where X ≡ −2.5 log(fX/f0X), and where a blackbody
at 9, 600 K (i.e. Vega) is defined to have J-H=0 and H-K=0? (This definition means you do not

need any of the values of f0X .)

(d) Consider the standard interstellar extinction curve. If you have 1 magnitude of J-band extinction,
how many magnitudes of H-band and K-band extinction do you have, respectively?

(e) What is the ratio E(J-H) / E(H-K) you get as a result of interstellar extinction? (The quantity
E(X-Y ) is defined as the X-Y you observe through the dust minus the X-Y you would have
observed without dust; E stands for “excess”.)

(f) Sketch a plot with the vertical axis as H-K and the horizontal axis as J-H . Pick a point on the
plot, and label that point “star”. This represents the colors of your star (whatever they are).
Draw two vectors on this plot originating at the star position, which indicate (1) the direction
that the observed color will move as you add more and more dust extinction, and (2) the direction
that the observed color will move as you add more and more dust emission (at T=400 K).

. . . continued on next page. . .
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3. Consider the following toy atom (which is nothing real), assuming that only the three states indicated
exist, and that no significant transitions occur between the 2D3/2 and 2D5/2 states.

S4
3/2

D2
5/2

2D3/2

λ λ1 2

The 2D3/2 state has a collisional de-excitation rate of q21 = 3× 10−8 cm3 s−1 (at the relevant temper-
ature), and a radiative de-excitation rate of A21 = 2 × 10−5 s−1.

The 2D5/2 state has a collisional de-excitation rate of q21 = 2× 10−8 cm3 s−1 (at the relevant temper-
ature), and a radiative de-excitation rate of A21 = 4 × 10−6 s−1.

(a) What is the critical density of each transition?

(b) Would you expect the line ratio λ1/λ2 to increase or decrease as density increases? (Be careful to
associate the right λ with the right state in the picture.)

(c) As drawn, the two 2D states are at a similar energy in comparison to their gap from the energy
of the 4S state. If instead we chose two upper states more widely separated in energy, would this
make a good density diagnostic? Why or why not?

(d) Consider the collection of states drawn below:

λλ

λ 2

31

Why would it be preferable to use the ratio λ2/λ3 rather than λ1/λ3 as a temperature diagnostic?
Why?

(e) Will the ratio you chose in (d) increase or decrease with temperature?
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