
Chapter 1

Units and Dimensionality

If somebody asked me how tall I am, I might respond “1.78”. But what do I mean
by that? 1.78 feet? 1.78 miles? In fact, my height is 1.78 meters. Most physical
measurements have dimensionality to them. That is, they are meaningless unless
you attach a unit to them. Dimensionality means the type of unit. For example,
inches, meters, miles, and light-years are all length units; something measured in
those units have dimensionality of length. Kilograms, grams, and solar masses are
all units of dimensionality mass. Measurements of different dimensionalities cannot
be meaningfully compared. How many kilograms are there in a meter? The question
does not even make sense.

There are some dimensionless quantities. For example, ratios are nearly always
dimensionless. How many times older than my nephew am I? I am seven times
older; that seven doesn’t have any units on it, as it’s a ratio of two ages (42 years
and 6 years, respectively). For any other number you report, it’s essential that you
report the units of the number along with the number itself. Otherwise, you haven’t
completely specified what you’re talking about.

1.1 SI Units

There is a “standard international” system of units. You may ask, why does anybody
ever use anything other than these? SI Units are a good set of units for everyday
measurements. However, they are very clumsy when dealing with the very small or
the very large. When talking about atoms, or about stars, it’s often convenient to
use other units that are better matched to the scale of the system. What’s more,
some places historically use other units; for instance, the United States still uses the
British Imperial system of units.
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There are a finite number of dimensionalities. For purposes of this course, there
are only four dimensionalities that you need to know about. They are, with their SI
units, listed below:

Dimensionality SI Unit

Length m
Mass kg
Time s
Electric Charge C

The four core dimensionalities are length, mass, time, and electric charge.1 For each
dimensionality there can be a lot of different units. Something of dimensionality
length can be measured in any length unit, but cannot be measured with a (say) time
unit. It doesn’t make sense directly to compare quantities of different dimensionalities.
So, I could measure my height in feet— 5.84 feet is my height— or in meters. While
clearly the number 1.78 does not equal 5.84, 1.78 meters does equal 5.84 feet. A
measurement with dimensionality is clearly different from a pure number; the units
on the number affect what that number means.

You are already familiar with the meter, kilogram, and second. (Indeed, because
of these three base units, the SI system is sometimes called the “MKS” system.) You
may or may not have heard of the Coulomb before. All other units that we will
deal with are derived from these base units. For instance, consider velocity. The
dimensionality of velocity is length over time (sometimes written L/T ). Any unit
that corresponds to a length divided by a time is a valid velocity unit; that could be
kilometers per hour, miles per hour, or furlongs per fortnight. The dimensionality
of velocity is neither length nor time, but is composed of those two dimensionalities.
The SI unit for velocity is meters per second, or m/s. Sometimes derived units have
their own names. Below is a table of some of the more important derived units in the
SI system:

Dimensionality Unit Definition
Force Newtons N kgm s−2

Energy Joules J Nm = kgm2 s−2

Power Watts W J/s = kgm2 s−3

(Remember that something raised to the negative power is in the denominator. Thus,
one Newton is “one kilogram times meter per second squared”, or kgm/s2.) While
we can say that “force” is the dimensionality of force— as in the table above— that

1In fact, in the SI system, electric current rather than electric charge is considered a core dimen-

sionality. However, it’s conceptually more simple to consider charge as the core unit, and current as

a derived unit, so I’ll use that in this document.
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is exactly the same as saying it is a dimensionality of mass times length divided by
time squared, or M L/T 2, or M LT−2.

Some people will “just always work with SI units”, and then not write down units
to go with their numbers during intermediate calculations. The idea is that since
you’re always using the standard, the final result of any series of calculations will be
in the SI unit for whatever it is that you calculated. Even though, if you are careful,
you can get away with this, it would still be wise to write down the units that go with
numbers every time you write down those numbers. There are two primary reasons for
this. First, it makes it much clearer what you are doing and what these intermediate
numbers actually are. Without that, anybody reading your calculations may have
a hard time following them, and you have not communicated as effectively as you
might have. Second, by keeping track of your units throughout your calculation, you
provide yourself with a cross-check: does your final answer have the units that it’s
supposed to have? If it doesn’t, then that’s a sign that you’ve made a calculation
mistake somewhere along the way.

For example, suppose I told you that the density of water is 1 gram per cubic
centimeter, and I wanted you to tell me how much mass there is in a spherical drop
of water with radius 0.2 cm. First, let’s convert to SI units; if you do it right, you
can figure out that 1 g/cm3 equals 1000 kg/m3. Also, 0.2 cm is equal to 0.002 m. If
you say that the volume of a sphere is πr2, you could calculate the volume from this
number:

V ol = π (0.002)2 = 1.257× 10−5

Then, multiply the volume by the density to get the mass:

m = (1000)(1.257× 10−5) = 0.013

Figuring that you’ve done everything in SI units, you should get an answer in the
SI unit for mass, so you could write down and box m = 0.013 kg . However, this
answer is wrong. Did you see where it went wrong? Let’s redo the problem, this
time keeping track of units:

m = (V ol)(dens)

= (π (0.002m)2)

(

1 kg

m3

)

= (1.257× 10−5 m2)

(

1 kg

m3

)

= 0.0127
kg

m

Notice in the last step we cancelled the meter2 in the numerator with two of the three
meters in the denominator’s meter3. But, wait! This doesn’t leave us with an answer
that has dimensionality mass, it has dimensionality mass per length! Clearly we’ve
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done something wrong. In this case, the mistake was in our formula for volume. In
fact, the volume of a sphere is of radius r is 4

3
π r3. We caught this error because, by

keeping track of the units as we were putting numbers into the calculation, we saw
that the units didn’t work out right. If you put in the right formula for volume, you
discover that there are only 3.4×10−5 kg of water in a droplet that’s 2 mm in radius.

1.1.1 SI Prefixes

Some “derived” units are just a prefix in front of a regular unit. There is a standard
set of SI prefixes that can be prepended to any unit in order to make another unit
of the same dimensionality but of a different size. The ones you are probably most
familiar with are milli and kilo. A millimeter is 1/1000 of a meter, and a kilometer
is 1000 meters. You could do the same thing with seconds; a millisecond is 0.001
seconds, and a kilosecond is 1000 seconds (about 17 minutes). Indeed, the SI mass
unit, the kilogram, is itself 1000 grams. In this class, we will frequently talk about
things that are much smaller, such as nanometers and microseconds. If you are in an
astronomy class, you might find yourself using the mega or giga prefixes more often.
The table below summarizes the prefixes.

Prefix Abbreviation Multiplier

terra T 1012

giga G 109

mega M 106

kilo k 103

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

Notice that case matters. There is very big difference between a Mm and a mm—
a factor of a billion, in fact! The letter used to indicate micro is the Greek letter mu.
There are a million µs in one second. The prefixes deci and centi are not used very
often, and generally only with meters. While you will talk about centimeters, nobody
generally talks about centigrams or centiseconds.
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1.2 Arithmetic with Dimensional Quantities

When you put together numbers that have dimensions on them, you have to keep
track of the units as you are doing your arithmetic. You can do algebra with numbers
that have dimensions on them. However, it is not a good idea in general to do

algebra with numbers. Solve things symbolically first, and only put in the numbers
at the end. When you do this, you will have various quantities with different units.

When adding or subtracting numbers with units, you need to make sure that they
have the same units. First of all, it doesn’t make sense to add numbers with different
dimensionality. One meter plus one kilogram isn’t even meaningful. One meter plus
one inch is meaningful, but it is not equal to two anything. You need to convert one
of the two units to the other before adding the numbers. You could write one meter
as 39 inches, and then say that one meter plus one inch is equal to 40 inches.

Multiplying and dividing units is more interesting. In this case, you treat the units
just as if they were algebraic variables. If you multiply meters by meters, you get
meters squared (or m2). If you divide seconds cubed (s3) by seconds, you get seconds
squared (s2). If you raise a quantity with units to a power, you have to remember to
raise every part of that quantity’s units to the same power. For example, you may
be calculating the kinetic energy of a car massing 1,500 kg moving at 20 meters per
second:

KE =
1

2
mv2 =

1

2
(1500 kg)

(

20
m

s

)2

=
1

2
(1500 kg)

(

400
m2

s2

)

= 3.0×105
kgm2

s2

Notice that the squared on the velocity is applied to the number, to the meters, and
to the seconds.

1.3 The Unit Factor Method

Sometimes you will need to convert one unit to another unit. The trick for doing
this: multiply by one as many times as necessary. You can always multiply a
number by 1 without changing that number. The secret is writing the number 1 in a
particularly clever way. Here are some ways you can write the number 1:

1 =

(

60 min

1 hr

)

1 =

(

2.54 cm

1 in

)

1 =

(

1M⊙

2.0× 1030 kg

)
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(The M⊙ in the last example is the standard symbol for the mass of the Sun.)

If you have an expression in one set of units and you need them in another set of
units, you just multiply by one as many times as necessary. Cancel out units that
appear anywhere on both the top and bottom in your huge product, and you will be
left with a number and another set of units. A simple example: convert the length
2.500 yards into centimeters:

2.500 yd = (2.5 yd)

(

36 in

1 yd

)(

2.54 cm

1 in

)

= (2.5× 36× 2.54) cm = 228.6 cm

Notice that yards (yd) appear in the numerator and the denominator, and so get
canceled out, as does inches. We’re left with just cm. All we did was multiply the
value 2.5 yd by 1, so we didn’t change it at all; 228.6 cm is another way of saying
2.500 yd.

Another example: suppose I tell you that the surface area of the Sun is 2.4× 1019

square meters. How many square miles is that?

(

2.4× 1019 m2
)

(

100 cm

1 m

)2 (

1 in

2.54 cm

)2 (

1 ft

12 in

)2 (

1 mi

5280 ft

)2

Two things to notice about this. First, notice how all the unit factors are squared.
That’s because we started with meters squared at the beginning, which is meters
times meters. If we’re going to get rid of both of them, we have to divide by meters
twice. The same then goes for all of the other units. Next, notice that everything
except for the left-over miles squared cancel out. We’re left with a bunch of numbers
we can punch into our calculator (remembering to square things) to get:

(2.4× 1019)(1002)

(2.542)(122)(52802)
mi2 = 9.3× 1012 mi2

One more example. Sometimes you have more than one unit to convert. If I tell
you that a car moves 60 miles per hour, how many meters per second is it going?
(Notice here that instead of arduously multiplying out the conversion between meters
and miles as I did in the previous example, I’ve looked up that there are about 1609
meters in one mile.)

(

60
mi

h

)(

1609 m

1 mi

)(

1 h

60 min

)(

1 min

60 s

)

= 27
m

s

Note that since hours was originally in the denominator, we had to make sure to put
it in the numerator in a later unit factor to make it go away (since we didn’t want
any hours in our final answer).

With this simple method, you can convert any quantity from one set of units to
another set of units, keeping track of all the conversions as you do so.
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1.4 Significant Figures

Suppose I tell you that one stick is 1.0 meters long, and that it is 4.7 times longer
than another stick. How long is the second stick? Writing the words as equations
(see previous section), you might write:

l1 = 4.7 l2

l1 is what you know (1.0 meters), and l2 is what you’re looking for, so solve the
equation for l2:

l2 =
l1
4.7

plug in the numbers and solve for the answer:

l2 =
1.0 m

4.7
= 0.212765957447 m

That answer is wrong! Why? Because it is expressed with too many significant
figures.

Think about the original problem. I told you a stick was 1.0 meters long. Notice
that I didn’t say 1.00 meters long; only 1.0 meters long. That means that I was only
willing to commit to knowing the length of the stick to within a tenth of a meter.
It might really be more like 1.04 meters long, or perhaps 0.98 meters long, but I’ve
rounded to the nearest tenth of a meter. Since I only know the length of the stick to
about ten percent, and since I used that number to calculate the length of the second
stick, I can’t know the length of the second stick to the huge precision that I quote
above— even though that is the “right” number that my calculator gave me. Given
that I only know that the first stick is 1.0 meters long, and it is 4.7 times the length
of the second stick, all that I can say I know about the length of the second stick is:

l2 = 0.21 m

By saying this, I’m implicitly saying that I don’t know the length of this second stick
to better than the hundredths place. . . and I don’t! Implicitly, I’m saying that I know
the length of the second stick to about one part in 21. That’s actually a bit better
than I really know it (which is just to one part in 10, or to 10%, as that’s all the
better I know the length of the first stick), but this is the best you can do with just
significant figures. (To do better, you have to keep track of not just units, but also
uncertainties on every number. Doing so is an important part of the analysis of data
in physics experiments. However, propagating uncertainties is beyond the scope of
this course.)

How well you know a given number you write down is the reasoning behind signifi-
cant figures. The basic idea is that you shouldn’t report a number to more significant
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figures than you know are right. The rules can sometimes seem arbitrary, but if you
think about them in terms of the basic idea behind them, they can start to make
sense. There are four basic rules of significant figures:

1. When multiplying or dividing numbers, the answer has as many significant digits
as that member of the product or quotient that has fewer significant digits. So, if
I multiply 3.14159 by 2.0, the answer is 6.3; I round the answer to two significant
figures, because 2.0 (the member of the product with fewer significant figures)
only has two. This rule is an expression of the percent uncertainty in the figures
that are going into your result. If you only know a number to within (say) 5%,
then you will generally only have two significant figures on that number. You
can’t know the result of anything you multiply or divide by that number to
better than 5% either, so the result won’t have more significant figures than the
number that went into it.

Sometimes, it makes sense to report your result to one more or one less signif-
icant figure than what went into the calculation. This will make sense if you
understand the “percent uncertainty” reasoning behind the number. For in-
stance, if I tell you one stick 95 meters long, and another stick is exactly 1/9 as
long as the first stick, the significant figure rule would suggest that you should
only keep two figures, and report the answer as 11 meters long. However, the
two significant figures on the first number means that you know it to about one
part in 95. It would be better to report the answer as 10.6 meters long, since
a result that is implicitly good to one part in 106 is much closer to your true
precision than a result that is implicitly good only to one part in 11.

2. When adding or subtracting numbers, the answer is precise to the decimal place
of the least precise member of the sum. If I add 10.02 meters to 2.3 meters, the
answer is 12.3 meters. The second number was only good to the first decimal
place, so the sum is only good to the first decimal place. Notice that the number

of significant figures here is different from either number that went into the sum.
When multiplying, it is the number of significant figures that is important; when
adding, it is the decimal place that is important.

Note that if I were to add 10.02 meters to 2.30 meters, the answer would be 12.32
meters; in this case, both members of the sum are significant to the hundreds
place. It is possible to gain significant figures doing this. If you add 6.34 meters
to 8.21 meters, each significant to three figures, the result is 14.55 meters, now
significant to four figures.

This rule makes sense again if you remember that significant figures represent
the precision of a number. To what decimal place do you know all the things
that you are adding or subtracting? You can’t know the result to better than
that decimal place.
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3. A number which is exact should not go into considerations of significant figures.
For example, suppose you’re doing a unit factor conversion, and you multiply by
the factor (12 in/1 ft). Your answer need not be limited to two significant figures
because of this; there are exactly 12 inches in one foot. That’s a definition; there
is no uncertainty associated with it. In the first rule above, when I told you
that the second stick was exactly 1/9 as long as the first stick, the 9 in 1/9
was a “perfect” number: you were told it was exact. Thus, that there is only
one significant figure in the number 9 did not come into consideration for the
number of significant figures in the answer.

4. Always keep at least two or three more figures during intermediate

calculations than you will report as significant figures in your final

answer. This is one of the two most common mistakes I observe in student
work. (The other is thoughtlessly reporting your answer to however many digits
your calculator gave you.) Otherwise, “round-off” errors will accumulate, and
you may get the final answer wrong even though your general method and
equations were correct. Consider, for example, summing the numbers 6.1 and
5.3, and multiplying the overall result by 4.1. The sum will be good to the first
decimal place, and the final number will only be good to two significant figures
because of the two significant figures in 4.1. The result is:

5.3 + 6.1 = 11.4

(11.4) (4.1) = 46.74 = 47 to two sig figs

If, however, you round too soon, and don’t keep the .4 at the end of the 11.4:

(11) (4.1) = 45.1 = 45 to two sig figs

In fact, you’re now wrong! Even though both 11 and 4.1 are good to two
significant figures, your result is incorrect to two significant figures. This is an
example of “roundoff” error, where you lose precision by rounding numbers too
soon.

You don’t always have to get the number of significant figures exactly right. Sig-
nificant figures are, after all, just an approximation of correctly taking into account
and propagating your uncertainties, which is a topic that those who do more ad-
vanced studies in physical science will have to address. Just be reasonable, and make
sure you understand the rationale behind why an answer might have a limited num-
ber of significant figures. It will often be acceptable to report an answer to one too
many significant figures. However, it is technically incorrect to report a number that
obviously has too many significant digits; in that case, you’re misrepresenting your
knowledge. By the same token, don’t report a number with too few significant figures
either, as in that case you’re underselling what you know!
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1.5 Dimensional Analysis

You can sometimes figure out something about a physical quantity just by considering
its dimensionality. If you know what sorts of thingsmight affect that quantity, and you
have good reason to believe that it is just powers of those things multiplied together
to give you that quantity, you may be able to figure out (up to a dimensionless
constant) the equation that relates that quantity to the things that might affect it
just by figuring out what makes the units work.

Consider the example of a simple pendulum: a small mass (the “bob”) hangs at
the end of a string. The other end of the string is fixed. The bob may oscillate back
and forth. We want to figure out what is the equation for the period P (i.e. the length
of time it takes to go through one oscillation). If we think about things that could
affect that, there are three obvious possibilities. The first is the mass m of the bob at
the end of the pendulum, the second is the length l of the string connecting the bob
to the point from which the pendulum hangs, and the third is g, the acceleration due
to gravity. For each of these quantities, we’ll write down the dimensionality in terms
of mass (M), length (L), and time (T ). (Note that M here means mass, not meters!)

[m] = M
[l] = L
[P ] = T
[g] = L/T 2

The “bracket” notation, here, means “dimensionality of”. So, the dimensionality
of the period is time; the dimensionality of acceleration is length divided by time
squared.

If the period is a product of various powers of the different quantities, then we
can write:

[P ] = [m]a [l]b [g]c

The period itself wouldn’t be equal to this, as there may well be (and, in fact, there
is) a dimensionless quantity multiplying everything else. However, even if we don’t
get the right formula, we can figure out how the period depends on these other things.

Now, put in the dimensions for each quantity:

T = Ma Lb

(

L

T 2

)c

T =
Ma Lb+c

T 2c

Matching up the powers of each dimensionality on the left— which is simple, there is
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only T to the first power— to the powers on the right, we get these three equations:

a = 0
b+ c = 0
−2c = 1

In this case, the equations are easy to solve. The bottom equation gives us c = −1/2,
and that together with the second equation gives us b = 1/2. So, we now know that:

P ∝ l1/2g−1/2

P ∝

√

l

g

Without doing any of the actual physics to figure out the period of the pendulum,
but only by considering the units on each quantity, we’ve figured out that the period
must be proportional to

√

l/g. (If you want to figure out the dimensionless constant

in front of
√

l/g, then in fact you do need to consider the full physics.)
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