
Chapter 12

Multiple Particle States

12.1 Indistinguishable Particles

Every electron is exactly the same as every other electron. Thus, all electrons are
indistinguishable. This means that if you have a state with two electrons, you can
swap the two electrons and it cannot change anything physically observable from that
state.

To make this concrete, suppose the state |ψ〉 is a state with two electrons. Let’s
define |ψ′〉 as the state with those two electrons swapped. Then, the expectation
value of any operator must be the same for these two different states:
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Also, the probability for any measurement of any observable to be made must be the
same for the two states. That is, if 〈φ| is an eigenstate of a given observable, then

|〈φ |ψ〉|2 = |〈φ |ψ′〉|2

If you think about it, however, this does not mean that the two states must
be identical! However, they must be close enough such that anything physically

observable from the state must be identical. Below, we will introduce the exchange

operator as a way of quantifying the effect of identical particles on quantum states.

12.2 Notating Multiple Particle States

Before we go further, we need to refine our notation so that we can keep track of
two different particles. We can construct a two-particle state by putting together two
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states for each individual particle with:

|ψ1〉 ⊗ |φ2〉

The ⊗ operator indicates that we’re putting these two states together to form a
composite state. It’s sometimes called a “direct product”, but it’s not really all that
much like multiplication. Really, it just means that we’re making some composed state
that combines particle 1 in state |ψ〉 and particle 2 in state |φ〉. The subscript indicates
which particle we’re talking about; the rest of the stuff inside the ket indicates the
state of that particular particle.

For simplicity, we will often omit the ⊗ symbol in the “direct product”, and just
write the two states next to each other, e.g.

|ψ1〉 |φ2〉

Again, this does not mean that we’re multiplying two ket vectors, which is something
we can’t do. Instead, it means that we’re composing the states. If these were spin
states, we would not represent this with two column vectors. Instead, we’d represent
it with a single four-row column vector; the first two rows have the column vector
representation of whatever state the first particle is in, and the second two rows have
the column vector representation of whatever state the second particle is in.

If an operator operates on this state, it only affects the state for the particle it is an
operator for. That is, if “spin-z for particle 2” is the observable we’re talking about,
then the operator Ŝz2 only operates on (in this example) the state |φ2〉. Indeed, you
can treat |φ1〉 as if it were a constant:

Ŝz2 |ψ1〉 |φ2〉 = |ψ1〉 Ŝz2 |φ2〉

As an example, suppose that particle 1 is in the state |+z〉 and particle 2 is in the
state |−z〉. If we apply the Ŝz2 operator to this state, we get:

Ŝz2 |+z1〉 |−z2〉 = |+z1〉 Ŝz2 |−z2〉

= |+z1〉
(−h̄

2

)

|−z2〉

=

(

− h̄
2

)

|+z1〉 |−z2〉

Here, we have taken advantage of the fact that |−z2〉 is an eigenstate of Ŝz2, and
replaced the action of the operator with a simple multiplication by the eigenvalue.

There will be some operators (e.g. the forthcoming exchange operator) that don’t
operate on just one of the two particles, but on both at the same time.
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Similarly, with inner products, bra versions of a state only “stick” to ket versions
of a state on the straight side of the bra-ket notation if they are states for the same
particle. Thus, suppose we had a composite state:

|ξ〉 = |ψ1〉 |φ2〉

The corresponding bra vector is:

〈ξ| = 〈ψ1| 〈φ2|

Normalization of this state is then expressed as:

〈ξ | ξ〉 = (〈ψ1| 〈φ2|) (|ψ1〉 |φ2〉)

= 〈ψ1 |ψ1〉 〈φ2 |φ2〉

= 1

We’ve rearranged states here a bit. We moved the |ψ1〉 from after the 〈φ2| to before it.
This should make you a little nervous; we’ve seen that with matrices and other things
that aren’t simple numbers, multiplication is not necessarily commutative. However,
again, in this case, when it comes to inner products, a state for a different particle
can be treated as a constant with respect to inner products for the first particle. As
such, it’s entirely legitimate to move |ψ1〉 into, out of, and through inner products
on particle 2 (at least in the case of the simple composed states we’re talking about
here).

12.3 The Exchange Operator

The exchange operator, notated here by P̂12, just exchanges particle 1 for particle 2.
In order to satisfy the conditions described in Section 12.1, a state composed of two
indistinguishable particles (e.g. two electrons) must be an eigenstate of the exchange
operator. Suppose that |ξ〉 is such a state. This means that

P̂12 |ξ〉 = c |ξ〉

where c is the eigenvalue. Suppose that we apply the exchange operator twice. What
will happen? We should get back to the original state! We’ve just swapped the two
particles back. Let’s apply this twice:

P̂12 P̂12 |ξ〉 = P̂12 (c |ξ〉)

= c P̂12 |ξ〉

= c2 |ξ〉
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If the result of applying this exchange operator twice must be the state we started
with, then we must have c2 = 1. This is regular old fashioned squaring, not taking
the absolute square. That c2 = 1 means that there are only two possibilities for
the eigenvalue of the exchange operator working on a state of two indistinguishable
particles: c = 1 or c = −1.

12.4 Fermions and Bosons

In quantum mechanics, there are two kinds of particles. Fermions are particles that
are antisymmetric under the exchange operator; that is, if |ξ〉 is a two-particle state
for two indistinguishable fermions, P̂12 |ξ〉 = − |ξ〉. Bosons are particles that are
symmetric under the exchange operator; that is, if |ξ〉 is a two-particle state for two
indistinguishable bosons, P̂12 |ξ〉 = |ξ〉. This is summarized below:

P̂12 |ξ〉 =







|ξ〉 for a two-boson state

− |ξ〉 for a two-fermion state

Which particles are which? Particles that have half-integral spin— which includes
the spin-1/2 electrons we’ve been talking about all this time— are fermions. Other
fermions include protons, neutrons, quarks, and neutrinos. Particles with integral
spin are bosons. Bosons include photons, pions, and the force carriers for the weak
and strong nuclear forces.

How do you create a two-fermion state with a total z component of angular mo-
mentum equal to zero? The most obvious first thing to guess is just to assign each
particle angular momentum in a different direction, so that they cancel:

|ξ〉 = |+z1〉 |−z2〉

However, this state doesn’t work! Why not? Consider the operation of the exchange
operator on it:

P̂12 |+z1〉 |−z2〉 = |+z2〉 |−z1〉
We started with particle one having positive z-spin and particle 2 having negative
z-spin. After the exchange, it’s the other way around. However, this isn’t the same
state, nor is it a constant times the original state. On other words, this state is not
an eigenstate of the exchange operator. Therefore, it’s not a valid quantum state if
particle 1 and particle 2 are indistinguishable particles (e.g. if they’re two electrons).

A valid two-fermion spin state with total angular momentum zero would be:

|ξ〉 =
1√
2
|+z1〉 |−z2〉 − 1√

2
|+z2〉 |−z1〉
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To verify that this works, let’s try the exchange operator on this state:

P̂12 |ξ〉 = P̂12

(

1√
2
|+z1〉 |−z2〉 − 1√

2
|+z2〉 |−z1〉

)

= 1√
2
P̂12 |+z1〉 |−z2〉 − 2√

2
P̂12 |+z2〉 |−z1〉

= 1√
2
|+z2〉 |−z1〉 − 1√

2
|+z1〉 |−z2〉

= − |ξ〉
Sure enough, this state is an eigenstate of the exchange operator. What’s more, the
eigenvalue is −1, which is required for fermions. (If you’re wondering about why
we mess about with all of the 1/

√
2 coefficients, we do that so that |ξ〉 is properly

normalized. You can verify that this is the case, and indeed doing so would be good
practice in doing algebra with bra and ket vector representations of multiple particle
states.)

12.5 The Pauli Exclusion Principle

The Pauli Exclusion Principle states that no two fermions may occupy the same
quantum state. This principle is absolutely crucial to life as we know it; without it,
we would not have the Periodic Table of chemistry, nor would we have a lot of the
rest of the structure of matter. This doesn’t mean, however, that only one electron
in the Universe is allowed to have positive z spin! Obviously, we have many more
than two electrons in the Universe. However, if you have a quantum state, such
as an energy level in an atom, where you can put electrons, you can only put two

electrons into that energy level. Why two, and not one? Because of electron spin; as
long as the two electrons have opposite spin (or, more precisely, are in a combined
spin state with spin angular momentum zero such that they are antisymmetric under
exchange), then you can put two electrons into the same state. It is possible to have
two electrons with the same spin, so long as something else is different about their
quantum states. So, for example, you could have two electrons with the same spin if
they were in different orbitals in an atom.

Why can’t you put more than one fermion in the same state? Because it’s im-
possible to construct an antisymmetric state vector two fermions in the same state.
Suppose you have a state |ψ〉, and you want to put two fermions into it. We know
that the state:

|ψ1〉 |ψ2〉
won’t work, because the exchange operator working on it just produces the same state
back, not the negative of the same state:

P̂12 |ψ1〉 |ψ2〉 = |ψ2〉 |ψ1〉 = |ψ1〉 |ψ2〉



104 Multiple Particle States v0.29, 2012-03-31

This is an eigenvalue of the exchange operator, which is good, but the eigenvalue
is +1. This would work for bosons; indeed, because of this, you can put as many
bosons as you want all into the same state. However, for fermions, the eigenvalue of
the exchange operator working on the two-particle state needs to be −1. If we try
to construct an antisymmetric wave vector with both of these electrons in the same
state:

1√
2
|ψ1〉 |ψ2〉 − 1√

2
|ψ2〉 |ψ1〉

we just end up with 0, which isn’t a state at all. Thus, if you have two indistinguish-
able fermions, there must be something different about their states; you can’t put
more than one fermion into a single quantum state.

12.6 Entangled Particles

When two particles’ quantum state is a combined quantum state, we say that those
two particles are entangled. Most of the time we encounter such states, we don’t worry
about it too much. The two electrons in the ground state of Helium have entangled
states, because they are indistinguishable particles. You can’t talk about the state of
one electron without talking about the state of another.

Entangled quantum states become more interesting when you separate the two
particles. Suppose that there is some sort of reaction that produces two electrons
that have a total spin angular momentum of zero. We’ve seen before that the state
of these two electrons is then:

1√
2
|+z1〉 |−z2〉 − 1√

2
|+z2〉 |−z1〉

Although the total z angular momentum of this combined state is 0, a definite value,
the angular momentum of an individual electron is not in a definite state. Now sup-
pose that you separate these two electrons; it may be that the reaction that produces
them sends them shooting off in two directions, which for discussion purposes we shall
call “left” and “right”.

Now let’s suppose that somebody far off to the left detects the left electron and
measures its z-spin. This measurement will collapse the wave function of the left
electron, putting it into a state of definite z spin. However, because it’s a combined
state for the two electrons, you can’t collapse the wave function of just one of them;
you have to collapse the entire state all at once. Therefore, if somebody measures
the z spin of the left electron, the wave function of the right electron also collapses
at that moment, even if nobody has made a measurement on it. If the left observer
measures that the left electron is spin up, then anybody off to the right will observe
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that the right electron is spin down; the right electron is no longer in an indefinite
state, even though nothing was done to it.

This behavior of entangled particles is what Einstein referred to as “spooky action
at a distance”. (citation needed.) Not only was he disturbed by the stochastic nature√

of quantum mechanics, he was also bothered by what seemed to be communication
faster than the speed of light. Does some sort of signal traverse from one electron to
the other electron in order to communicate the fact that their mutual wave function
has collapsed? Together with two other physicists, Podolsky and Rosen, Einstein
argued that this behavior indicated that quantum theory had to be incomplete. In
1935, they published a paper describing what is now known as the “EPR Paradox”
(Einstein et al., 1935). If quantum mechanics is indeed incomplete, then there would
need to be some sort of “local hidden variable” that tells a particle which way its wave
function should collapse when that particle is measured. This variable is “hidden”
because it is not accounted for in quantum mechanics. In the early 1960’s, physicist
John Bell proposed experiments that would test the EPR paradox by being able to
tell the difference between the standard predictions of quantum mechanics and the
predictions of a theory that had some sort of local hidden variables (citation needed).√

Experiments performed since then have shown that in fact standard quantum me-
chanics does predict the correct results, and that therefore there are no local hidden
variables. The fact is that, somehow, the wave function of an electron can collapse
when another electron is measured— and that other electron may, at least in principle
even if this is not realizable in practice, be light-years away. This raises philosophical
issues associated with the interpretation of quantum mechanics, but also indicates
that quantum mechanics remains a very robust theory.
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