
Chapter 13

The Schrödinger Equation

13.1 Where we are so far

We have focused primarily on electron spin so far because it’s a simple quantum
system (there are only two basis states!), and yet it still shows much of the peculiar
nature of reality on the quantum level. In particular, we’ve seen the following things
in the theory of quantum mechanics:

• A “system” (e.g. the angular momentum vector of an electron) may be an an
indefinite state, also sometimes called a “mixture” of states, where an observ-
able doesn’t have a set value. Rather, the state of the system is such that if
the observable were measured, there is a probability of different values being
observed. The mathematical theory represents this by allowing states to be
sums of coefficients times orthogonal basis states. For example, with angular
momentum of a spin-1/2 particle such as an electron, the basis states are |+z〉
and |−z〉.

• Observables may take on quantized values. For example, every time you measure
the z component of angular momentum of an electron, you get either +h̄/2 or
−h̄/2. This is in sharp contrast to what you’d see in classical physics.

• What propagates in quantum mechanics is amplitudes. For example, if an elec-
tron is in state |ψ〉, the amplitude to measure it to have z angular momentum
+h̄/2 is 〈+z |ψ〉. The probability, which is what we can really find in experi-
ments, is the absolute square of the amplitude; in this example, that would be
|〈+z |ψ〉|2.

• Different observables may be orthogonal (the second use of this term). If they
are, then a system can not be in a definite state for those two observables at
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the same time. The projections of angular momentum along different axes are
orthogonal; position and momentum along the same direction are orthogonal.

• Observables in quantum mechanics are paired with operators. A quantum me-
chanical operator operates on a quantum state (represented by a ket vector),
and the result of that operation is another (non-normalized) quantum states
(i.e. another ket vector). For example, if we call the z component of angular
momentum spin-z or just sz, the operator that goes with it is Ŝz, the spin-z
operator. Operators are quite abstract, and form a mathematical part of the
theory that is useful, but is difficult to interpret and associate directly with
something that you could observe.

• A state that is a definite state for a given observable is an eigenstate of that
operator. (We would also say that the ket vector that represents that state is an
eigenvector of the operator; if we’re representing operators as matrices, then the
column vector that represents the state is an eigenvector of the operator.) An
operator working on one of its eigenstate returns a constant times the same state.
That constant is called the eigenvalue associated with the eigenstate. If this
operator corresponds to an observable, that eigenvalue must be a real number,
and corresponds to the physical measurement you’d make of that observable.
For example:

Ŝz |+z〉 =
h̄

2
|+z〉 .

This equation is the eigenvalue equation, in this case specifically for the z-spin
operator and the |+z〉 state. The state |+z〉 is a state of definite z-spin, so it is
an eigenstate of the z-spin operator Ŝz. The eigenvalue equation for this state
and this operator includes the constant h̄/2, which is the actual value of the z
component of spin angular momentum that an electron in state |+z〉 has.

• You can find the expectation value for a system in state |ψ〉 for a given ob-
servable by sandwiching the observable’s operator between 〈ψ| and |ψ〉. For

example, the expectation value for z-spin for a given electron is
〈

ψ
∣

∣
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Ŝz

∣

∣

∣
ψ
〉
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The expectation value is the average value you’d get if you measured the ob-
servable for that state. That is, if you took a large number of systems in that
state and measured the observable for all of those systems, you’d get differ-
ent results, with probabilities for each result predicted by the mathematics of
quantum mechanics. The average of all those results would be the expectation
values.

Although the eigenvalue equation is fairly abstract, it’s a very important part of
the mathematical theory of quantum mechanics. The only direct connection it has
to what we might observe in the lab is that it extracts (in the form of the eigenvalue)
the measured quantity for the observable that you’d get for a given eigenstate (i.e.
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definite state) of that observable’s operator. However, the operator itself doesn’t
represent any particular physical operation you might perform in the lab.

From a broader point of view, the eigenvalue equation is the equation you can use
to figure out what states are possible definite states for a given operator, and therefore
what values you might measure for the observable associated with that operator.

13.2 Stating the Equation

As was briefly mentioned in Section 8.5, the energy operator is an operator so impor-
tant to quantum mechanics that it gets its own proper name, the Hamiltonian, and
the eigenvalue equation for it also gets its own name, the Schrödinger equation. It is
this equation that allows us to figure out the energy states of a system, and it could
be argued that energy states are the most important states in quantum mechanics.
It is energy levels in atoms that provides all of the structure that gives us the Peri-
odic Table of the Elements, and it is transitions between those energy levels that we
observe in a number of both terrestrial and astrophysical contexts.

At the most base level, the Schrödinger equation is just the energy operator eigen-
value equation:

Ĥ |ψ〉 = E |ψ〉

Ĥ is the Hamiltonian; it’s the operator that corresponds to energy as an observable.
Solutions |ψ〉 to this equation are the eigenstates of energy. The value E that goes
with a given solution |ψ〉 is the energy associated with that state. Technically, this
equation is called the Time-Independent Schrödinger Equation. (There is also a full
Schrödinger equation that describes how quantum states evolve in time.)

A full investigation of the Hamiltonian requires differential calculus, so we won’t
fully present it here. However, you can break the Hamiltonian into two parts. In
doing so, we’re going to go to a wave function representation of the state vector |ψ〉.
Whereas we have used column vectors to represent spin states, it is more traditional
(and more useful) to represent energy states as functions of position ψ(x, y, z). As
with a regular function, ψ(x, y, z) is just something into which you can plug a position
(i.e. values of x, y, and z) and get a number— although in this case that number
can be a complex number. Dividing the Hamiltonian into two parts and writing the
state as a wave function yields this form of the Schrödinger equation:

K̂ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = E ψ(x, y, z)

The Hamiltonian here has been divided into the kinetic energy operator K̂, and the
potential energy V (x, y, z). Note that the action of the potential energy operator
is just multiplying the wave function by the potential energy! The aforementioned
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differential calculus is buried inside K̂. In fact, there isn’t a single Schrödinger equa-
tion. Rather, there’s a different one for each form of the potential V (x, y, z). This
also means that the solutions ψ(x, y, z) will be different for each potential.

Although the full time-independent Schrödinger equation is in fact a function in
the full 3-D space that we live in, for much of what we do below we will simplify it
and consider only one dimensional systems. This makes dealing with it conceptually
simple, but does not obscure any of the essential physical results. Such systems can in
fact be realistic. For example, if you consider a mass moving on a spring attached to
a wall, that is essentially a one-dimensional system, as the mass moves only forwards
and backwards along the direction the spring is oriented.

13.3 Free Particles & the de Broglie Wavelength

A particle is called a “free particle” if its potential is constant. That is, there are
no potential energy wells or barriers anywhere. It’s simplest to choose that constant
potential energy to be zero, as that reduces the Schrödinger equation to:

K̂ψ(x) = E ψ(x)

(in the one-dimensional case). Solutions to this equation are called “plane-wave”
solutions. They are states with definite momentum p = E2/2m (which is exactly
what you’d expect if you compare momentum and kinetic energy in classical physics).
However, their position is completely undetermined; there is equal probability for any
x, which is what you’d expect for a state of definite momentum given the Heisenberg
Uncertainty Principle. The functional form of ψ(x) is just a standard wave:

ψ(x) = A cos(2π x/λ) ± iA sin(2π x/λ)

where A is a constant (a complex number) that normalizes the wave. The ± depends
on whether the wave is moving to the right (i.e. momentum is in the +x direction)
or to the left (i.e. momentum is in the −x direction). The normalization condition
will only put a constraint on the absolute square of A, meaning that there will be
many complex numbers that satisfy it. As such, there isn’t one single solution to this
equation; however, all of the solutions do give the same predictions for measurable

things such as the probability of finding the electron at a given spot. The value λ
that shows up in these equations is the wavelength; that is it’s the range of x over
which it takes the sine or the cosine to go through one complete cycle. Note that
although ψ(x) varies with space, the probability of finding x at any given position,
|〈x |ψ〉|2, does not! See Section 13.7 for more details about this.

In this case, the energy levels are not quantized. E can be anything in the equation
above. A different energy E does correspond to a different wavelength in the plane
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wave represented by ψ. In these solutions, the energy E of the particle is related to
the wavelength λ of the wave function by:

E =
h2

2mλ2

It’s more traditional to express this wavelength, called the de Broglie wavelength, in
terms of the momentum of the particle:

λ =
h

p

You can get this equation directly from the previous equation by using the relationship
E = p2/2m, that results from the combination of kinetic energy E = 1

2
mv2 and

momentum p = mv. The constant h here is a version of Plank’s Constant, related to
h̄ by h = 2π h̄.

For example, what is the de Broglie wavelength of an electron moving at 1×106 m/s
(a “typical” speed for an atomic electron)? We would plug the right numbers into
this equation:

λ =
h

p
=

h

mv

=
6.626× 10−34 kgm2 s−1

(9.109× 10−31 kg)(1× 106 ms−1)

= 7× 10−10 m = 0.7 nm

For comparison, this is about 1/1000 the wavelength of visible red light.

Many of the physical effects peculiar to quantum mechanics show up as wave in-
terference between different components of a wave function ψ(x). All waves, including
those that derive from classical physics (such as waves on a string, sound waves, or
electromagnetic (i.e. light) waves), show interference effects. The fact that the wave
function, this abstract mathematical object which is used to figure out things about
the state of a particle, also shows interference effects is what we mean when we say
that sometimes particles behave like waves. In general, the longer the wavelength of
a wave (i.e. the larger λ is), the easier it is to see interference effects. The de Broglie
wavelength indicates that wavelength is inversely proportional to momentum. For a
non-relativistic particle (which is implied here, as the Schrödinger equation assumes
non-relativistic particles), p = mv. Thus, for particles moving at a given velocity,
the larger m is, the smaller λ is. This is why it is so difficult to observe quantum
interference effects for larger objects; the effective wavelength, and thus the typical
separations that you’d need to see those effects, becomes tiny.
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13.4 Quantized Energy Levels in Bound Systems

Whereas a free particle has a continuum of energy states available to it, if the particle
is bound in a potential its available energy states are quantized. For a particle to
be bound in a potential, the potential must limit a region of space that the particle
could access classically. That is, if there is an energy well of some depth, the particle’s
energy over the bottom of the well must be less than the depth of the well:

V(x)

x

x0 x1

V
0

E1

E2

A finite square potential well, with potential en-
ergy 0 chosen to be the bottom of the well. (Some-
times, one chooses the top of the well to be poten-
tial energy 0.) If a particle’s total energy is less
than the depth of the well V0, as is the case for
energy E1 in the figure, that particle is bound in
the well. If the particle’s total energy is greater
than the depth of the well, as is the case for energy
E2 in the figure, that particle is free, although its
wave function is still influenced by the presence of
the well.

In this example, a particle would be classically limited to the range of position
x0 < x < x1 (see Section 2.2.2). Quantum mechanically, the particle is most likely to
be found in that range, but it turns out there is a finite non-zero probability that the
particle is found outside the classically allowed volume!

In this square well, there are a finite number of energy states available to a par-
ticle. Classically, a bound particle could have any energy 0 ≤ E < V0. However,
quantum mechanically, the particle must be in one of specific separated states. This
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is analogous to what we’ve seen with angular momentum of a spin-1/2 particle, where
the projection of angular momentum along one axis must take on one of two specific
separated values. For the square well, the allowed energy levels qualitatively looks
something like:

V(x)

x

x0 x1

V
0

E1

E2

E3

In this example, there are only three allowed energy states, and the energies of those
states are E1, E2, and E3. Notice that the lowest allowed energy level is not 0!
That is, you can’t have a particle that’s got no kinetic energy. This fits with the
Heisenberg Uncertainty Principle. By binding the particle into the potential well,
you’ve set constraints on the particle’s position: it’s most likely to be between x0 and
x1. The particle isn’t equally probable to be anywhere, so the uncertainty on the
particle’s position ∆x is finite (and indeed will be something close to x1 − x0). As
such, there must be a corresponding uncertainty in the particle’s momentum ∆p, so
it’s impossible for the particle to be in a zero-momentum state.

13.5 The Simple Harmonic Oscillator

One important potential energy function is the Simple Harmonic Oscillator, or SHO.
This is the potential energy of a spring (so long as you don’t stretch of squish the
spring too much). It also turns out to be a decent approximation, at least for lower
energy levels, for a number of quantum systems. One such system is the vibrational
energy states of a Hydrogen moleculeH2. The form of this potential, in one dimension,
is:

V (x) =
1

2
mω2 x2

Here,m is the mass of the particle moving in the potential. ω is the “natural frequency
of oscillation” for the potential; for a classical spring, it would correspond to 2π/T ,
where T is the period of oscillations. (Of course, for a classical spring, the system
could also have any energy!)
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The solution to the one dimensional Schrödinger equation for this potential gives
the following energies for the energy eigenstates:

En = (n+
1

2
) h̄ ω

where n is an integer 0, 1, 2, . . .. As written, this potential is an infinitely high poten-
tial (V (x) just keeps going up as x gets farther and farther from 0.) As such, there
are an infinite number of allowed energy levels. Of course, as an approximation to
a real physical system, usually the approximation will get worse and worse as x gets
farther and farther from 0, which means that the solutions less and less of a good
approximation to the real energy system for higher and higher energy levels.

13.6 The Hydrogen Atom

The potential that an electron in a Hydrogen atom experiences results from the
electrostatic interaction between the electron (which is negatively charged) and the
proton (which is positively charged). (A Hydrogen nucleus is composed of a single
proton.) It is traditional (and convenient) to choose the zero level of the potential
to be when the electron is extremely far away from the proton. This means that the
potential energy gets more and more negative as the electron gets closer and closer
to the proton. The form of this potential is:

V (r) = −
1

4πǫ0

e2

r

In this equation, ǫ0 is a fundamental constant related to the effective strength of the
electromagnetic force; it’s value is 8.854× 10−12 C2 m−1 J. The letter e indicates the
elementary charge; it is the charge on the proton, and the absolute value of the charge
on the electron. It’s value is 1.602 × 10−19 C, where C is “Coulombs”, the SI unit
of charge. Finally, r indicates the distance between the electron and the proton. If
we consider the proton to be at the origin, then r =

√

x2 + y2 + z2, with (x, y, z)
indicating the position of the electron. The Schrödinger equation for an electron in a
Hydrogen atom is then:

K̂ψ(~r) −
1

4πǫ0

e2

r
ψ(~r) = E ψ(~r)

Here, we’ve written ψ(~r) as a shorthand for ψ(x, y, z); the vector form of r, ~r, indicates
that the wave function depends on the electron’s displacement from the origin. In
fact, it’s more common and more practical to express the wave function in terms of
spherical coordinates (r θ, φ), where r is the distance from the origin, θ is the angle
off of the z axis, and φ is the angle off of the x axis in a projection on to the x-y
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plane. (Even though the potential is spherically symmetric, in that it only depends
on the distance from the origin, it turns out that the wave function solution is not

always spherically symmetric. The reason for this is angular momentum, and that
will be discussed in the next section.)

As with the other potentials discussed above, the allowed energy levels are quan-
tized. In the Hydrogen atom, that energy level is specified by a principle quantum

number n. The energy levels in a Hydrogen atom are:

En =
−13.6 eV

n2

The ground state of Hydrogen has an energy of −13.6 eV. That is, if you want to
tear the electron off of the Hydrogen atom (a process known as ionization), you need
to somehow provide at least 13.6 eV of energy in order to give the electron enough
energy to make it out to extremely large distances away from the proton.

The figure below slows the Hydrogen atom potential and the first few energy
levels. Higher and higher energy levels are less tightly bound (it takes less energy to
ionize the atom, freeing the electron). They also get closer and closer together.

V(x)
x

E1

E2

E3

E4

In fact, there are three quantum numbers associated with the solution to the
Hydrogen atom. In addition to the principle quantum number n, there is also the total
orbital angular momentum quantum number l, and the orbital z-angular momentum
quantum number m. You could notate the energy eigenstates in a Hydrogen atom,
corresponding to a state that the electron could actually be in, by |n, l,m〉. The
ground state for a Hydrogen atom, in this notation, would be |1, 0, 0〉. For actual
electrons, there’s a fourth quantum number you have to specify: s, the z-spin of the
electron. For every state n, l,m in a Hydrogen atom, there are in fact two different
electron states, one where the electron has z-spin +h̄/2, one where the electron has
z-spin −h̄/2. We’ll call this quantum number s, and it will have either the value
+1/2 or −1/2.
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In Hydrogen, to very good approximation the energy of an eigenstate |n, l,m〉
only depends on the principal quantum number n, regardless of l and m. That is,
the eigenvalue associated with states |2, 1, 0〉 and |2, 0, 0〉 are exactly the same (and
are equal to E = (−13.6eV)/n2 = −3.4 eV). In atoms with more than one electron,
things get more complicated, and the energy of a given state may depend on the other
quantum numbers.

13.7 Interpretation of the Wave Function ψ(x)

In general, it is best to view ψ(x) the same way that you view |ψ〉. It’s an abstract
mathematical object that represents the state of the system. Quantum mechanics
is then a theory, a mathematical model of reality that includes rules for manipulat-
ing ψ(x) (or other representations of |ψ〉) in order to make predictions about the
results of experiments, such as probabilities for observing particles in certain states,
or expectation values for certain values.

It turns out that there is one particularly simple rule that can be applied to ψ(x)
in order to learn something about the state of the system. if ψ(x) is a properly
normalized single-particle wave function, then the construction ψ∗(x)ψ(x)dx is the
probability of finding that particle between position x and position x + dx, where
dx is a small range of x. (By “small”, we mean small enough that ψ(x) does not
appreciably change over the range.) As an example, consider the free particle wave
function:

ψ(x) = A [cos(2π x/λ) ± i sin(2π x/λ)]

If we want to find the probability for finding a particle at a given position, we multiply
this function by its complex conjugate:

ψ∗(x)ψ(x)dx = A∗A
[

cos
(

2π x

λ

)

∓ i sin
(

2π x

λ

)) (

cos
(

2π x

λ

)

± i sin
(

2π x

λ

)]

dx

= A∗A
[

cos2
(

2π x

λ

)

+ sin2
(

2π x

λ

)

± i cos
(

2π x

λ

)

sin
(

2π x

λ

)

∓ i cos
(

2π x

λ

)

sin
(

2π x

λ

)]

dx

= A∗A
[

cos2
(

2π x

λ

)

+ sin2
(

2π x

λ

)]

dx

To simplify this further, we can use the trigonometric identity sin2 φ+cos2 φ = 1 (this
applies for all φ). Thus, we are left with:

ψ∗(x)ψ(x)dx = |A|2 dx

That is, the probability of finding a free particle at any x within a given range dx is
always the same. This corresponds to an infinite uncertainty in position x, which is
what we need given that this state has a definite momentum p = h/λ.
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The construction ψ∗(x)ψ(x)dx works for any one-dimensional wave function for
calculating the probability of finding the particle at a given position. Using the three
dimensional version of this construction on the solutions to the Hydrogen atom is
what gives us the “electron cloud” diagrams you may have seen for electron orbitals.
More about that in the next chapter.
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