
Chapter 8

Operators and Eigenvectors

8.1 Operators

In quantum mechanics, we associate observables with operators. There is a position
operator, an energy operator, a spin-z operator, etc. The exact form of the operators
and the rules for how you work with them vary depending not only on what the
operator is, but on the representation we’re using for the type of states that the
operator operates on. In this chapter, we’re concerned with operators in general, so
we’re going to keep things abstract. In the next two chapters, we’ll see how actually to
do calculations with the operators and ket vectors that represent angular momentum
states.

On the most level, an operator is just something that does something to some-
thing else. Whether you know it or not, you’re already familiar with a wide variety
of operators in regular mathematics. For example, the addition operator, usually
denoted with the + symbol, is a binary operator. It takes two arguments, and returns
a third argument of the same type. For example, 3+2 is the notation we use to apply
the addition operator to the numbers 3 and 2. Our understanding of the rules for
applying this operator tells us that the result is 5.

The operators we’re going to use in quantum mechanics just operate on one thing,
a quantum state vector. An analogy to arithmetic would be the negation operator.
If you see −a written, you recognize that whatever number a represents, −a is the
negative of that number. The − sign just denotes that one should apply the operator
that performs this negation to the number a. Another operator you’re familiar with
is square root. When you see

√
4, that means that you should apply the square root

operator to the number 4; the result in this case is 2.

Here, we will follow the convention of putting a “hat” on top of letters that
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represent quantum operators. So, Ô would be a particular operator. Operators
operate on ket vectors1, and the result of the operation is another ket vector. So, if
we write:

|φ〉 = Ô |ψ〉
then we’re saying that when you apply the Ô operator to the state |ψ〉, the result is
the state |φ〉.

8.2 Eigenstates

An eigenstate is a state that corresponds to some observable having a definite value.
So, |+z〉 and |−z〉 are eigenstates of the z component of angular momentum. Likewise,
|+y〉 and |−y〉 are eigenstate of the y component of angular momentum. Quantum
systems do not necessarily have to be in an eigenstate of anything. However, the act of
measurement causes a quantum state to “collapse” to an eigenstate of the observable
that was measured.

If a quantum state is an eigenstate of a given observable, then we can describe the
state vector that represents that state as an eigenvector of the operator corresponding
to that vector. For example, suppose that Ŝz is the spin-z operator. Then, |+z〉 is
an eigenvector of Ŝz. (We will also later talk about eigenfunctions. This is when you
are using mathematical functions as a way of representing quantum states. Before
we get to that, we will use column vectors to represents |ψ〉, so there will be no need
to invent a term beyond eigenvector.)

Eigenvectors of an operator have a special relationship with that operator. If a
given vector is an eigenvector of a certain operator, then the following applies:

Ô |ψ〉 = v |ψ〉

where v is just a scalar constant. In other words, when an operator operates on one
of its own eigenvectors, the result of that operation is the same vector that went
into it, only multiplied by a constant. In quantum mechanics, there is an additional
constraint: these eigenvalues must be real (i.e. their imaginary part must be zero).
What’s more, there’s a very direct interpretation to them: the are the measured
values that corresponds to the respective eigenstate. So, for the spin-z operator:

Ŝz |+z〉 =
h̄

2
|+z〉

1They can also operate on bra vectors, but there are some wrinkles to how they work. In the

standard notation, an operator always has to operate through one of the straight sides of a vector,

be it bra or ket. For our present purposes, we’ll only allow operators to operate to the right on ket

vectors.
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Ŝz |−z〉 =
−h̄
2

|−z〉

This knowledge right here will allow us to do calculations with operators and ket
vectors, even if we don’t actually know the detailed mechanics for just what it is that
the operator is doing, nor what the detailed mathematical representation we’re using
for our ket vectors. Just as with the probability calculations we’ve done before, even
though we’re keeping ket vectors abstract, we can still get results out of them.

The different eigenstates of a given operator are orthogonal. This was already
discussed in Section 6.4, although there we hadn’t yet introduced the concept of
operators. There, we said that the different states corresponding to definite states for
a given observable were orthogonal. Now, we know that another way to say “the states
corresponding to the definite states for a given observable” is “the eigenstates for the
observable’s operator”. This means that if you have an operator with eigenstates
|φn〉, then

〈φn |φm〉 = 0 if n 6= m.

Also, the eigenstates for a given operator need to be normalized, that is,

〈φn |φn〉 = 1.

The set of eigenstates for a given operator form a set of “basis states”. If you
put all of them together, you can express any state in terms of those basis states (as
long as you’re talking about the same general kind of state). So, for example, the
spin-z operator Ŝz has two eigenstates, |+z〉 and |−z〉. Those two eigenstates form
a basis, and you can write any electron spin state as a sum of constants times those
two states. (For example, |+x〉 can be written 1

√

2
|+z〉 + 1

√

2
|−z〉.) This is why we

call the complete set of eigenstates for the operator a “basis”: it’s a base upon which
all other states can be built. By considering different different operators from the
same general type, you may be able to come up with a different basis. For example,
all electron spin states could just as well be written as sums of the eigenvalues of Ŝx;
in that case, |+x〉 and |−x〉 form a different set of basis states. By convention, we
generally use |+z〉 and |−z〉 as the basis states for spin angular momentum, but we
don’t have to.

8.3 Linear Operators

In order to go any further, there are two properties of these operators that we have
to know. These operators are what we call linear operators. Do not confuse this with
a straight line on a graph, for when we say “linear” here we do not mean anything
so concrete. Rather, to say that an operator Ô is linear is to imply the following two



70 Operators and Eigenvectors v0.29, 2012-03-31

properties, where k is a scalar constant:

Ô (|ψ1〉 + |ψ2〉) = Ô |ψ1〉 + Ô |ψ2〉

Ô (k |ψ〉) = k Ô |ψ〉
The action of an operator on a sum of vectors is just the sum of the actions of
that operator on the two vectors. Second, if a constant multiplies a vector and you
want to operate on that constant times that vector, you are free to pull the constant
out in front of the operator, and do the multiplication of by the constant after you
perform the operation of the operator on the vector. (Notice that you can’t do the
multiplication by the constant first once you’ve pulled it out before the operator. All
we’ve defined for using these vectors is to have one of them operate on a ket vector
that is to its right. We haven’t defined any way for one of these operators to interact
with something to its left.)

8.4 Operators on Non-Eigenstates

What happens when an operator works on a ket vector that is not one of its eigenstates
out? You get a different ket vector out, one that can’t be expressed as a constant
times the ket vector that the operator did its work on. As an example, let’s figure
out the result of the spin-z operator on an x eigenstate:

|ψ〉 = Ŝz |+x〉

We don’t know enough to perform the calculation on the right side of the equation.
However, we can substitute for |+x〉 in terms of the z eigenvectors:

|ψ〉 = Ŝz

(

1√
2
|+z〉 +

1√
2
|−z〉

)

We can use the fact that Ŝz is linear to make the next step:

|ψ〉 =
1√
2
Ŝz |+z〉 +

1√
2
Ŝz |−z〉

Now, we have the Ŝz operator just operating on its own eigenstates, and we know how
to handle that! We can replace Ŝz |+z〉 with (h̄/2) |+z〉, because h̄/2 is the eigenvalue
that goes together with the |+z〉 eigenstate of Ŝz. We can do the equivalent thing
with |−z〉. Performing these substitutions:

|ψ〉 = 1
√

2

(

h̄

2

)

|+z〉 + 1
√

2

(

− h̄

2

)

|−z〉

= h̄

2

(

1
√

2
|+z〉 − 1

√

2
|−z〉

)
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You may recognize the thing in parentheses here as |−x〉. That means that

|ψ〉 =
h̄

2
|−x〉

which is the operation of Ŝz on the state |+x〉:

Ŝz |+x〉 =
h̄

2
|−x〉

Clearly, |+x〉 is not an eigenstate of Ŝz, as the operation of Ŝz on that state doesn’t
return the same state, but a different state. We expected this; if eigenstates corre-
spond to states that have definite values for the observable of a given operator, then
states that don’t have definite values for that observable can’t be eigenstates for that
operator. And, we’ve seen before that |+x〉 doesn’t have a definite value for z-spin.

8.5 The Hamiltonian

There is one operator in quantum mechanics that is so important it has its own name,
and the eigenvalue equation for it in turn has its own name. That is the operator
corresponding to energy. Energy is an observable for a quantum particle or a quantum
system; it is something that you could measure. The operator that corresponds to the
observable energy is called the Hamiltonian, and is usually denoted with the symbol
Ĥ. If a state |ψ〉 is an energy eigenstate, then the usual eigenvalue equation applies

Ĥ |ψ〉 = E |ψ〉

where E is the eigenvalue that corresponds to the eigenvector |ψ〉. This equation only
works if |ψ〉 is in fact an eigenvector for the Hamiltonian! That means that it is a
state that has definite energy, and E is the value of that energy. This equation is
called the time-independent Schrödinger equation.

The eigenstates for the Hamiltonian are usually expressed as functions of position.
Thus, we might write

Ĥ ψ(x) = E ψ(x)

and call that the one-dimensional time-independent Schrödinger equation. The func-
tion ψ(x) is a “wave function”, and is a representation of a quantum state that we
have previously been calling |ψ〉. It is important to remember that both are just rep-
resentations, and are quite abstract. The wave function or wave vector is an abstract
mathematical object, to which you can do things to in order to make predictions
about the system that the theory is modeling. The wave function is not a function
like ~v(t), the velocity of a particle as a function of time. If you have a full expression
for ~v(t), you can interpret it fairly directly; just plug in a time t, work out what the
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function is, and you’ve got the velocity at that time. Not so for the wave function
ψ(x). Even if you do have the functional form, the interpretation is not so direct.
One thing that you can do to it in order to get something physical out is operate the
Hamiltonian on it. If you do that, you get back a constant times the function; that
constant is the energy that corresponds to the state represented by the function. In
later chapters, we will see ways to pull out other physical interpretations of the wave
function.

Despite being called “the” Hamiltonian, it is actually not just one operator. Re-
member that the energy of a particle can come in two forms: kinetic energy and
potential energy. The Hamiltonian operator has two parts to it, one for kinetic en-
ergy and one for potential energy. Unfortunately, we won’t be able to look in detail
into how we represent the Hamiltonian operator, because to do so would require cal-
culus. However, even though kinetic energy for a given particle is only a function of its
speed, potential energy can be entirely different depending on the environment that
the particle is interacting with. For instance, if your particle is at the end of something
that behaves just like a spring, then the potential energy for that particle (which is
just a function of position) would be the simple harmonic oscillator potential. For
an electron orbiting an atomic nucleus, the interaction is the electrostatic interaction
and the potential is what we call the Coulomb potential. The Hamiltonians that are
built from different potentials will, of course, have different eigenfunctions. We call
those eigenfunctions the “solutions” of the Schrödinger equation.


