
Razvan Surdulescu Page 1 12/21/2004

Razvan Surdulescu
CS391L: Machine Learning
Final Project Report: Verifying Authorship
12/21/2004

Introduction
There are many literary texts whose author’s identity has been lost in time. Literary
detectives use historical and stylistic clues to solve such scholarly puzzles, but they rarely
withstand close scientific scrutiny due to the inherently subjective nature of these
methodologies. The problem of objectively determining authorship is of great
importance, both in the literary and historical fields as well as, more broadly, in law
enforcement (e.g. plagiarism), music, art, and so on.

[KOPP04] introduces a new and promising algorithm, called unmasking, which takes a
sample X and tells us whether it belongs to a single author A. They call this the
authorship verification problem. The key difficulty in this problem is that it is impossible
to generate a representative training set for A vs. non-A, so we cannot use standard
classification techniques. The key idea in solving this problem is to iteratively evaluate
the depth of difference between X and A as we remove discriminating features. There is a
closely related, but significantly easier authorship attribution problem which takes a
sample X and assigns it to one of multiple given authors using standard classification
approaches.

In this project, we implement unmasking and meticulously analyze the key parameters
that affect its performance on the original English corpus, as the description in [KOPP04]
is terse for some important implementation details. We then evaluate the performance of
unmasking on a corpus of Romanian literary works, and find that the algorithm is robust
and performs surprisingly well, despite a very naïve stop-word and grammatical
framework for the Romanian language. We conclude with a set of open questions and
future directions.

Problem Definition and Algorithm

Task Definition
We start with an anonymous text X and a set of texts belonging to an author A. We want
a binary yes/no answer (or a confidence interval) that indicates whether X has been
written by A. We want the method to depend as little as possible on any particular
language, genre, or other literary idiosyncrasies, in order to make the result more credible
(less dependent on subjective features), and also to enhance its applicability to other
domains.

In this paper, we use the same notation as in [KOPP04]: A denotes the texts written by
some author, and X denotes the unknown text whose authorship we wish to ascertain. We
further use the notation AX to denote all the works in the corpus of A (if A did not write
X), or all the works in the corpus of A except X (if A did write X). In the real world, this

Razvan Surdulescu Page 2 12/21/2004

distinction is immaterial because X is by definition an anonymous text (it is not known to
belong to A) so AX will always be congruent to A. The distinction between AX and A is
important in this paper because, during our experiments, we do know beforehand to
which A does X belong and we do not wish to include X into the training data for
determining its own authorship.

The key difficulty in authorship verification is that it is nearly impossible to generate the
training data. In authorship attribution, we can successfully learn a model of A vs. B. vs.
C etc., where A, B, and C are authors with well known corpuses. However, in authorship
verification, we want to learn a model of A vs. non-A, and there is no good, exhaustive,
and representative definition of non-A. This suggests that we should rely only on positive
data (text written by A) so we must employ only features from this domain in our
algorithm.

To further complicate matters, given A and X, it is possible to train a baseline SVM
([KOPP04 sec. 5.2]) to learn an accurate model of A vs. X (we do not reproduce this
particular result here because it is peripheral to this report). Even with no tweaking, such
an SVM will have very high classification accuracy. This means that regardless of
whether A wrote X or not, we can learn to distinguish A from X with very high accuracy,
so any author will appear as very different from X. Conversely, no author will appear as
any more likely than others to have written X. This suggests that an exact classifier that
learns A vs. X will not be appropriate so we have to use a more subtle approach.

As we will see later on, it is in fact possible to build a classifier that uses only positive
data and employs a subtle classification technique to ascribe authorship to X. Almost by
definition, such a classifier can be easily applied to other similar problems in completely
different areas, which makes it even more appealing. To wit, we apply this classifier to a
body of Romanian text and show that it performs very well despite the fact that we used a
limited set of stop words and a very impoverished word stemmer for the Romanian
language; this validates the assertion that the algorithm is robust and does not depend on
diminutive features of our datasets.

Algorithm Idea
Given an SVM model for AX vs. X, we rank all the input features used in creating the
model. If we iteratively remove the most important features from being used in the SVM
model, we observe a very peculiar behavior: if A did write X, the classification accuracy
decreases dramatically as we remove features. In other words, A and X become more
alike. If, however, A did not write X, then the classification accuracy stays roughly high
as we remove features. In other words, A and X remain relatively different. This is the
core of the unmasking algorithm.

The idea behind unmasking makes sense intuitively: if A wrote X, there are few
important input features that set them apart (i.e. there are fundamental similarities that
underlie authorship even if the author’s style may have changed over time). These few
important features do most of the work in training an accurate SVM for A vs. X; once
they are removed, A and X start to look increasingly the same. Conversely, if there are no

Razvan Surdulescu Page 3 12/21/2004

fundamental similarities, A and X continue to look different even as features are
removed, which suggests that A probably did not write X.

The speed with which A and X start to look the same is the key indicator for authorship.
We will demonstrate this phenomenon visually, on the graphs below, as well as
empirically, by means of a meta-learner that runs on the classification accuracy
degradation curves.

Note that all assumptions about how to represent the feature vectors used in training the
SVM are largely orthogonal to the essence of the algorithm (comparing the speed of
degradation). Although the actual value of the degradation speed is naturally dependent
on the choice and representation of features (we will see concretely in subsequent
sections), the algorithm will run the same no matter what the feature representation. This
is a powerful characteristic, for it allows unmasking to be run against many other
problem domains.

Algorithm Definition
Here is the algorithm definition (based on the description in [KOPP04 sec. 5.1, 5.3]). The
algorithm is provided in pseudo-code format, the reader is strongly encouraged to peruse
the attached source (Unmask.java) for the complete details:

1. Generate the vocabulary

1.1. Compute the frequency for all the words in AX
1.2. Compute the frequency for all the words in X
1.3. Create a list of all the common words between AX and X
1.4. Sort it by the average of their frequencies
1.5. Select the top most frequent 250 words as the problem vocabulary

2. Generate the train vectors
2.1. For every file in AX

2.1.1. Split text in chunks of at least 500 words without breaking paragraphs
2.1.2. For every chunk

2.1.2.1.Output a vector with label +1
3. Generate the test vectors

3.1. For every file in X
3.1.1. Split text in chunks of at least 500 words without breaking paragraphs
3.1.2. For every chunk

3.1.2.1.Output a vector with label -1
4. Unmask

4.1. For every feature removal iteration
4.1.1. For every cross validation fold

4.1.1.1.Exclude the features removed thus far from this fold’s data
4.1.1.2.Train a linear SVM model on this fold’s data
4.1.1.3.Compute the accuracy of this SVM on this fold’s data
4.1.1.4.Find the 3 strongest positive and negative features
4.1.1.5.Add them to the exclusion list

4.1.2. Output the average of the SVM accuracy for this iteration

Razvan Surdulescu Page 4 12/21/2004

Since the code written for [KOPP04] is not available, we implemented a version of the
unmasking algorithm above from scratch for this project. As you read the algorithm
pseudo-code above, the following questions come to mind:

A. What is the definition of frequency (1.1 and 1.2 above): is it the ratio of term
count to document length (TDF) or term count to maximum term count (TF)?

B. Do we employ a stop word list and stem the words1 before computing their
frequency (1.1 and 1.2)?

C. Do we include actual words or their stems in the vocabulary (1.3)?
D. Does the word count for every chunk include stop words or just vocabulary words

(2.1.1 and 3.1.1)?
E. The paragraph structure of various texts is very different; do the chunks end up

being approximately equal, and does it matter (2.1.1 and 3.1.1)?
F. What is the feature vector representation (2.1.2.1 and 3.1.2.1): is it binary, TF, or

TF-IDF?
G. Do the unmasking SVM experiments use a one-class SVM or a multi-class C-

SVC (4.1.1.2)?
H. How do we determine the optimal SVM parameters, in particular C and γ

(4.1.1.2)?

In our initial unmasking implementation, we selected reasonable, intuitive answers to the
questions above, but the accuracy of this implementation was unsatisfactory (nowhere
near close to the accuracy in [KOPP04]). We used the same SVM library2 and the same
English corpus (Appendix A) as [KOPP04]. All the texts in the English corpus came
from Project Gutenberg3, except the Emerson texts that came from The University of
Adelaide eText Library4 since they are not available at Project Gutenberg. All these texts
were pre-processed by removing automatic copyright pre- and post-ambles, page
markers, and other delimiters.

We spent a great deal of time building and tweaking experiments in order to better
answer the questions above and improve the accuracy of unmasking. We detail some of
this effort in the following subsections.

Vocabulary Selection
To build the vocabulary, we have to answer the following questions:

What is the definition of frequency (1.1 and 1.2 above): is it the ratio of term count to
document length (TDF) or term count to maximum term count (TF)?

1 Although stop words and stemming are standard practice in text classification problems, we could not be
sure of its effect in this text verification problem. See the important differences and difficulties between
classification/attribution and verification in the previous sections.
2 LIBSVM 2.6: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3 Project Gutenberg: http://www.gutenberg.org/
4 The University of Adelaide eText Library: http://etext.library.adelaide.edu.au/e/emerson/ralph_waldo/

Razvan Surdulescu Page 5 12/21/2004

Since the vocabulary consists of the top 250 words with highest average frequency, the
choice of frequency will produce different vocabularies. In practice, the actual words in
vocabularies produced with TDF vs. TF are largely the same (they differ in fewer than 10
words), so the unmasking accuracy numbers vary little between these two approaches.
The length of A can be much larger than the length of X, so the TDF approach produces
frequency numbers that are smaller for A vs. X. In contrast, the most frequent term in A
may not be much larger than the most frequent term in X, so the TF approach produces
frequency numbers that are more similar for A vs. X. We want to have the length of the
text reflected in the vocabulary selection, so we prefer the TDF approach.

Do we employ a stop word list and stem the words before computing their frequency (1.1
and 1.2)? Do we include actual words or their stems in the vocabulary (1.3)?

We used a standard English Porter stemmer and a list of 524 English stop words5 (see
stopwords.en.lst). Stemming significantly improves accuracy because by removing a
feature (a word stem) we remove all the words that originate in that stem so unmasking
converges within a few feature removal rounds (A and X look similar faster). It is
possible that tense selection, and other morphological features that are collapsed by
stemming differentiate between authors, but we find that eventually removing these
morphological features achieves the same result as stemming, it just takes longer.
Eliminating stop words improves accuracy because they are overwhelmingly more
frequent than non-stop words, so they conceal words that might otherwise capture
characteristics unique to each author; furthermore, these words are used similarly by
English authors so they do not reflect authorship.

Vector Representation
To build the feature vectors, we have to answer the following questions:

Does the word count for every chunk include stop words or just vocabulary words (2.1.1
and 3.1.1)?

We included all consecutive words towards the size of the chunk. Intuitively, this should
provide a more representative sample of vectors that describes the text since the
distribution of feature words is different from the distribution of all the words. More
importantly, this will provide more vectors, which means more training data: a chunk that
consists only of 500 feature words will be much larger (so there will be fewer of them)
than a chunk that consists of 500 consecutive words. The sparseness of the feature
vectors (the number of zero entries) is also affected by the chunk word count: if we only
consider vocabulary words, the feature vectors end up being denser. Naturally, this
affects the accuracy of unmasking significantly.

The paragraph structure of various texts is very different; do the chunks end up being
approximately equal, and does it matter (2.1.1 and 3.1.1)?

5 The stop words came from the Rainbow library: http://www.cs.cmu.edu/~mccallum/bow/rainbow/

Razvan Surdulescu Page 6 12/21/2004

The chunks do not end up being approximately equal. More importantly, the number of
chunks we obtain with the splitting approach above ends up being very different than the
number of chunks reported by the authors (Appendix A). The algorithm accuracy appears
to be sensitive to the size of the chunk: we experimented with sizes from 500 to 2000 and
ended up settling on 1500 as the optimal chunk size for this problem space. Of interest is
the fact that the works by James F. Cooper (The Last of the Mohicans, The Spy, Water
Witch) have roughly the same paragraph structure and size (866k, 878k, and,
respectively, 907k), and end up with roughly the same number of chunks in our
implementation (95, 94, and, respectively, 95). In the authors report, however (Appendix
A), they end up with a very different number of chunks (49, 63, and, respectively, 80)
which is inconsistent both among the texts as well as with any chunk size from 500 to
2000. Since the algorithm accuracy appears to be sensitive to the size of the chunk, this is
an area where additional experimentation would be beneficial.

What is the feature vector representation (2.1.2.1 and 3.1.2.1): is it binary, TF, or TF-
IDF?

The TF-IDF representation is favored among document retrieval and text classification
approaches, with the binary representation being a close second. However, in this
experiment, the TF representation turns out to provide better accuracy than either of the
other two. The goal of the IDF term (in TF-IDF) is to dampen the importance of words
that appear in many documents and highlight the importance of words that appear in few
documents. Intuitively, we believe that the speed with which unmasking converges is
intimately tied to the frequency of words: by removing frequent words, the classification
accuracy decreases rapidly if A wrote X, and stays roughly the same otherwise. By
making all the words look and behave more like each other in TF-IDF, we are essentially
putting the breaks on unmasking and making it converge more slowly. It is possible that
by running more unmasking iterations with TF-IDF we could obtain the same unmasking
accuracy as by running fewer unmasking iterations with TF, but we did not explore this
avenue fully.

SVM Setup
To build the feature vectors, we have to answer the following questions:

Do the unmasking SVM experiments use a one-class SVM or a multi-class C-SVC
(4.1.1.2)?

In [KOPP04 sec. 5.3] the authors train a one-class RBF kernel SVM ([SCHO00] and
[SCHO01]) for the baseline experiments (AX vs. X), but in [KOPP04 sec. 5.5] they use a
linear kernel SVM for the unmasking experiments (without specifying whether it’s one-
class or C-SVC) and perform cross-validation to assess its accuracy. After some
experimentation, we settled on the following approach:

1. Use a linear C-SVC.
2. Label all the AX vectors with +1, and all the X vectors with -1.

Razvan Surdulescu Page 7 12/21/2004

3. For cross-validation, shuffle and fold the data once at the beginning, then preserve
the same folds across all the feature removal iterations.

4. The accuracy of cross-validation is the misclassification rate of the C-SVC (the
rate of misclassifying a -1 as +1 or vice-versa), which is precisely the extent to
which the algorithm can tell X and AX apart.

How do we determine the optimal SVM parameters, in particular C and γ (4.1.1.2)?

The C-SVC parameters (in particular the cost C and the kernel function γ) are left at the
default (C = 1.0, γ = 1 / k where k is the number of features in the data). The way we
determined that the defaults work best is by performing an exhaustive grid search over a
set of possible (C, γ) pairs6:

1. Vary C over {2-5, 2-4, 2-3, …, 20 = 1, …, 215} using step 3 (pick every 3rd element)
2. Vary γ over {23, 22, …, 2-15} using step 3 (pick every 3rd element)
3. Train a C-SVC using the (C, γ) parameters above and assess its accuracy via 3-

fold cross-validation.
4. Select the (C, γ) pair that maximizes the cross-validation accuracy.

In a majority of cases, the highest accuracy was achieved by using the default (C = 1.0, γ
= [very small]) combination. The fact that the defaults tend to work well is encouraging
because running the grid search for every unmasking experiment (in order to determine
the optimal parameters) takes about 30 times longer than running the regular experiment
(circa 36 hours), so it is unfeasible in practice.

Given that we employ a linear kernel SVM, we use the definition of feature weight from
[BRAN02 sec. 3.1.3]. We compute the normal vector ∑=

i
iii yw xα , where α is the

SVM model coefficient for the given support vector, y is the vector label (+1 or -1) and x
is the support vector. This normal vector represents the normal to the hyperplane that
separates the two classes. In this weight vector, the magnitude of every entry is the
weight of the corresponding feature. In a related work ([KOPP03 sec. 6]) the authors
suggest scaling the feature weight by its frequency (TDF, TF or TF-IDF). Our
experiments suggest that leaving the weight unaltered works best; this is probably
because the SVM model already accounts for word frequency in the way it generates the
support vectors and, therefore, in the way the normal weight vector comes out.

Updated Algorithm Definition
Based of the observations above, here is the updated algorithm definition (changes
highlighted in red):

1. Generate the vocabulary

1.1. Compute the TDF frequency for all the non-stop word stems in AX
1.2. Compute the TDF frequency for all the non-stop word stems in X
1.3. Create a list of all the common words between AX and X

6 Parameter grid search is LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Razvan Surdulescu Page 8 12/21/2004

1.4. Sort it by the average of their TDF frequencies
1.5. Select the top most frequent 250 words as the problem vocabulary

2. Generate the train vectors
2.1. For every file in AX

2.1.1. Split text in chunks of at least 500 words without breaking paragraphs
2.1.2. For every chunk

2.1.2.1.Output a TF vector using word stems with label +1
3. Generate the test vectors

3.1. For every file in X
3.1.1. Split text in chunks of at least 500 words without breaking paragraphs
3.1.2. For every chunk

3.1.2.1.Output a TF vector using word stems with label -1
4. Unmask

4.1. For every feature removal iteration
4.1.1. For every cross validation fold

4.1.1.1.Exclude the features removed thus far from this fold’s data
4.1.1.2.Train a linear C-SVC model on this fold with default parameters
4.1.1.3.Compute the accuracy of this C-SVC on this fold’s data
4.1.1.4.Find the 3 strongest positive and negative features using only the SVM

weight vector and no scaling
4.1.1.5.Add them to the exclusion list

4.1.2. Output the average of the C-SVC accuracy for this iteration

Meta-learner
The output from the unmasking algorithm is a set of points that defines a degradation
curve for the specified AX, X pair as we iteratively remove features from the model. This
curve is labeled as T (if AX wrote X) or F (if AX did not write X). We use another meta-
learner to learn the labels for these curves and apply to future experiments.

In [KOPP04 sec. 5.4], the authors suggest representing each curve as a set of tuples
where for every feature removal iteration i, the tuples denote:

• The accuracy after i elimination rounds
• The accuracy difference between round i and i + 1
• The accuracy difference between round i and i + 2
• The ith highest accuracy drop in one iteration
• The ith highest accuracy drop in two iterations

The authors learn that the following two rules achieve 100% accuracy on the T curves
and 97.3% accuracy on the F curves:

• Accuracy after 6 elimination rounds if less than 89%
• The second highest accuracy drop in two iterations is greater than 16%

We briefly experimented with a simple J48 decision tree learner, and found that it has
good classification accuracy on these curves, both for the original English corpus and for
the test Romanian corpus. The details of these experiments are presented in the next
section.

Razvan Surdulescu Page 9 12/21/2004

Experimental Evaluation

Methodology
To validate our unmasking implementation, we tested on the same English corpus as the
one used in [KOPP04] (see Appendix A). Visually, we would expect one curve to sharply
decrease as it moves to the right (the curve of the actual author of X) while the other
curves should stay mostly flat or decrease slightly as they move to the right (the curve of
all the other authors that did not write X). Experimentally, the meta-learner has its own
accuracy of detecting the curve that degrades the fastest, which we compare to the results
in [KOPP04] and present as the conclusion to the individual degradation experiments.

To determine how applicable unmasking is to other problems, we tested on a corpus or
Romanian literary texts (see Appendix B). There were four significant challenges to
using Romanian text in this experiment:

1. Text availability: There are few long digital Romanian literary texts available on-
line. We selected a set of folk fairy tales7 for this experiment. Both these authors
are fixtures of Romanian literature, and folk fairy tales are some of the oldest and
most prevalent forms of Romanian literature. We believe that this body of work,
although limited, is sufficiently representative of Romanian literature in general.

2. Spelling: In 1989, after the change of regime in Romania, the official spelling
rules were altered to the way they were before 1945. Many extant digital texts
may not have been updated to reflect these spelling changes. This could severely
influence the accuracy of our unmasking algorithm if we tried to unmask a new-
style text against an old-style author corpus, with different spelling. Romanian has
a number of diacritic characters that do not exist in English (â, î, ă, ş, and ţ) and
very few digital texts go to the trouble of representing these accurately in
Unicode. This is another reason why it is important to use text from corpuses that
were represented the same way.

3. Stop words: There is no known existing set of Romanian stop-words, so we used
a direct translation of the set of English stop-words. Many English stop-words
(such as “please” or “mostly”) translate to multiple-word Romanian stop-phrases
(such as “te rog” or, respectively, “în cea mai mare parte”, see
stopwords.ro.lst for details). Changing the chunking algorithm to account for
stop-phrases is sufficiently complex that we decided to not do it in this project due
to time constraints. Fortunately, this turns out to have little effect on accuracy,
since sufficiently many one-word English stop-words translate to one-word
Romanian stop-words.

4. Grammar: The Romanian grammar is similar in complexity to Latin, in that it
has genders, declinations, highly irregular verbs, and many more verb tenses than
English. Implementing even a moderately accurate Romanian stemmer is
incredibly difficult, far more so than for English. The function of the word
(adjective vs. noun vs. etc.) in the context determines its stemming rules.
Furthermore, if the appropriate diacritics are not used, words can become even

7 Romanian Folk Fairy Tales: http://www.romanianvoice.com/culture/povesti/index.php

Razvan Surdulescu Page 10 12/21/2004

more ambiguous, which makes stemming more difficult (for example, “tari”
means “strong” [adjective, plural, masculine], while “ţări” means “countries”
[noun, plural, feminine]). For this project, we implemented a very simple
Romanian stemmer that simply eliminates (or in a few cases replaces) the word
endings that are unambiguously known to have a specific morphological function
(see StemmerRo.java for details).

Despite these severely simplifying assumptions in unmasking Romanian text, we believe
that the performance of unmasking on this new body of work is very telling. Romanian
folk stories tend to have very distinctive regional and temporal flavor, far more so than
the texts from the original English corpus, so we are interested in determining if
unmasking is really unaffected by these literary styles. Furthermore, the first known text
written in Romanian was a letter8 from the year 1521, using the Cyrillic alphabet (the
Latin alphabet was adopted many years later); prior to this, there is a lot of evidence of
oral literature and poetry, but nothing written down. As a result, we believe that there is
significant variance in writing styles across preserved Romanian literary texts, which
makes them a particularly good test for unmasking. We present the results for the
Romanian corpus in the same way as for the English corpus: visually, in terms of
degradation graphs, and experimentally, by using the meta-learner described above.

Results

English Corpus
See Appendix A for the contents of the original English corpus. At a high level, there are
two cases where unmasking completely fails to distinguish between AX and X: Figure 6:
Cooper The Spy and Figure 17: Shaw Pygmalion. In [KOPP04 sec. 5.5], the authors
indicate that their classifier also missed Shaw’s Pygmalion, so this is encouraging,
however the fact that Cooper’s The Spy is also utterly misclassified is disconcerting.
Furthermore, the quality of our other degradation curves is not always very good
(visually speaking). Of particular interest is the fact that almost all the Bronte sisters
curves9 start out fairly well separated from the other degradation curves, but then flatten
out, while the other degradation curves descend past them (see Figure 7: Anne Bronte
Agnes Gray, Figure 20: Anne Bronte Tenant of Wildfell Hall, Figure 13: Charlotte Bronte
Jane Eyre, and Figure 18: Charlotte Bronte The Professor). This indeed very peculiar
behavior, both because it does not match our expectations, and also because the
degradation pattern is so similar among these related authors!

In the interest of time, we did not analyze all the departures from expected behavior noted
above; however we did analyze in detail the case of Cooper’s The Spy as it is the most
aberrant of them all (based on the degradation curves in Figure 6, it would seem that The
Spy has been authored by a majority of the authors in our corpus, so strong and similar is
the degradation of these authors’ curves). We created a naïve, yet useful framework for
manually analyzing The Spy and for understanding its unmasking behavior.

8 The Letter of Neacşu from Câmpulung: http://www.cimec.ro/Istorie/neacsu/eng/default.htm
9 The Jane Eyre unmasking scenario is missing, since we only have one Jane Eyre book in the corpus
(Wuthering Heights), so we cannot build a degradation curve of Wuthering Heights against itself.

Razvan Surdulescu Page 11 12/21/2004

We select the features that were consistently removed in all the 10 feature removal
iterations. By consistently we mean that a feature was selected for removal in at least 5 of
the 10 cross-validation runs executed in every feature removal iteration. The idea is that
these features are (by a majority vote) more likely to discriminate among the texts
considered than the other features. We then compute the delta between the occurrence
count of these features in AX and X and we look for patterns. Naturally, we realize that
the count is a poor proxy for SVM feature strength; however we believe it is sufficient for
this naïve, manual analysis.

The size of the delta is important:

• If the delta is high, then this feature is probably a strong discriminator
• If the deltas are high and stay high, then there are lots of strong discriminators, so

the X was probably not written by A
• If the deltas are high but they drop quickly, there are few strong discriminators. so

X was probably written by A

The relative placement of the delta curves between two author candidates (A1 and A2)
and X is important:

• If one delta curve (say A1) is consistently above the other (A2), then one relative
discriminator strength is higher, so X is unlikely to have been written by A1 and
more likely to have been written by A2

• If the two delta curves are indistinguishable, then the relative discriminator
strength is the same, so we cannot be sure about authorship

Lastly, we look at how many discriminators there are in common between A1 and A2:

• If there are lots of common discriminators, then we cannot make a strong
statement about authorship, since the same discriminators can be used to
distinguish between A1 and A2

• If there are few common discriminators, then we can be more confident about
attributing authorship

We apply all these observations, in concert, to the scenario for The Spy (which is
particularly aberrant) as well to the scenario of Walden (which is particularly regular).
Here are the delta curves for Cooper vs. The Spy and Charlotte Bronte vs. The Spy:

Razvan Surdulescu Page 12 12/21/2004

Delta Curves for The Spy

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Feature index (ordered by delta)
Fe

at
ur

e
de

lta

Cooper
Charlotte Bronte

Remember that in Figure 6 the corresponding degradation curves are almost
indistinguishable. In this case, the two delta curves start out fairly close together, and
then quickly merge. This means that the discriminator strength (as evidenced by the
feature delta) is roughly the same between Cooper and Charlotte Bronte, so it is no
surprise that we cannot ascribe authorship to The Spy when pitted against these two
authors.

Now take a look at the delta curves for Thoreau vs. Walden and Hawthorne vs. Walden:

Delta Curves for Walden

0
20
40
60
80

100
120
140
160
180
200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Feature index (ordered by delta)

Fe
at

ur
e

de
lta

Thoreau
Hawthorne

In this case, the two delta curves start out fairly far apart, and then continue to stay
separated. This means that the discriminator strength (as evidenced by the feature delta)
is fairly different between Thoreau and Hawthorne, so it is no surprise that we can safely
ascribe authorship to Walden. Furthermore, there are 12 common discriminators between
Thoreau and Hawthorne, whereas there are 25 common discriminators between Cooper
and Charlotte Bronte. The fact that there are fewer common discriminators between
Thoreau and Hawthorne means that they are more likely to be separated via unmasking
than Cooper and Charlotte Bronte.

Leaving statistics and graphs aside for a moment, what is the real (literary or stylometric)
reason why The Spy would appear so similar to two completely different authors (Cooper,
the original author, and Charlotte Bronte)? The most likely explanation is that the bag-of-
words approach it too coarse and fails to capture subtler idiosyncrasies of these authors’
writing styles. Both Cooper and Charlotte Bronte lived and wrote in the first half of the

Razvan Surdulescu Page 13 12/21/2004

19th century, and although the former was American and the latter British, perhaps they
shared some common characteristics of the literary currents of the time.

We ran the Weka10 J48 decision tree algorithm on the set of degradation curves
(represented simply as the set of points that define the curve and a T or F label):

point7 <= 75.714286
| point7 <= 71.333333: T (11.0)
| point7 > 71.333333
| | point7 <= 72.5: F (4.0/1.0)
| | point7 > 72.5: T (3.0)
point7 > 75.714286: F (182.0/5.0)

The classification criterion for T curves is “point7 <= 71.3 OR (point7 > 72.5 AND
point7 < 75.7)”. This is not as simple or as intuitive as the criterion from [KOPP04]
(“Accuracy after 6 elimination rounds if less than 89%” AND “The second highest
accuracy drop in two iterations is greater than 16%”), but it achieves reasonably high
accuracy (70% for T, and 100% for F) as seen from the confusion matrix:

 a b <-- classified as
 14 6 | a = T
 0 180 | b = F

Interestingly, our J48 classifier was able to distinguish among these curves by means of a
single point (point7), which happens to be the same point that discriminates in [KOPP04]
(“after 6 elimination rounds”). The rule that involves point7 above spans two intervals as
opposed to just one (as in [KOPP04]). Since we did not represent the accuracy drop in
our degradation curves’ feature vectors, we could not involve these drops in the J48 rules,
but it is intuitively likely that these additional degradation features would provide a
stronger, more accurate meta-classification criterion.

We are now going to look at the complete set of degradation graphs obtained on the
English corpus. The important thing to look for in these graphs is whether there is one
curve that is clearly separated and under all the other curves (the curve of the actual
author of our mystery text) while all the other curves stay roughly flat. The better this
curve separates from the others, the more accurate and confident is our authorship
verification result. The legend for these curves is presented after all the graphs.

10 Weka, Data Mining Software in Java: http://www.cs.waikato.ac.nz/ml/weka/

Razvan Surdulescu Page 14 12/21/2004

Figure 1: Cooper Water Witch

The Cooper curve is fairly well
separated, but strong degradation
occurs everywhere.

Figure 2: Thoreau A Week On
Concord

The Thoreau curve is very well
separated, but the Emerson curve
also breaks from the rest.

Figure 3: Hawthorne House of
Seven Gables

The Hawthorne curve is well
separated, but strong degradation
occurs everywhere.

Figure 4: Hawthorne Dr.

Grimshawe's Secret
The Hawthorne curve is very well
separated.

Figure 5: Melville Redburn
The Melville curve is well
separated, but strong degradation
occurs everywhere.

Figure 6: Cooper The Spy
There is no clear separation among
the curves!

Figure 7: Anne Bronte Agnes

Gray
The Anne Bronte curve starts out
fairly well separated, but all the
other curves catch up.

Figure 8: Wilde A Woman of No
Importance

The Wilde curve is very well
separated.

Figure 9: Emerson Conduct of
Life

The Emerson curve is very well
separated.

Figure 10: Emerson English

Traits
The Emerson curve is well
separated, but jittery.

Figure 11: Shaw Getting Married
The Shaw curve is fairly well
separated.

Figure 12: Wilde An Ideal
Husband

The Wilde curve is very well
separated.

Razvan Surdulescu Page 15 12/21/2004

Figure 13: Charlotte Bronte

Jane Eyre
The Charlotte Bronte curve starts
out fairly well separated, but all
the other curves catch up.

Figure 14: Melville Moby Dick
The Melville curve is very well
separated.

Figure 15: Cooper The Last of
the Mohicans

The Cooper curve is well
separated.

Figure 16: Shaw Misalliance

The Shaw curve is fairly well
separated.

Figure 17: Shaw Pygmalion
There is no clear separation among
the curves!

Figure 18: Charlotte Bronte The
Professor

The Charlotte Bronte curve starts
out fairly well separated, but all
the other curves catch up.

Figure 19: Thoreau Walden

The Thoreau curve is very well
separated.

Figure 20: Anne Bronte Tenant
of Wildfell Hall

The Anne Bronte curve starts out
fairly well separated, but all the
other curves catch up.

Legend:

Romanian Corpus
See (Appendix B) for the contents of the Romanian corpus. Here are the degradation
curves:

Razvan Surdulescu Page 16 12/21/2004

Figure 21: Ispirescu's Aleodor

Imparat
The Ispirescu curve loses!

Figure 22: Ispirescu's Broasca

Testoasa cea Fermecata
The two curves are difficult to
distinguish.

Figure 23: Creanga's Capra cu
Trei Iezi

The Creanga curve clearly wins.

Figure 24: Creanga's Danila

Prepeleac
The Creanga curve clearly wins.

Figure 25: Creanga's Fata Babei

si Fata Mosneagului
The Creanga curve clearly wins.

Figure 26: Ispirescu's Ileana
Simziana

The Ispirescu curve clearly wins.

Figure 27: Ispirescu's Lupul cel

Nazdravan
The Ispirescu curve starts out
well, but the Creanga curve
catches up.

Figure 28: Creanga's Povestea

Porcului
The Creanga curve clearly wins.

Figure 29: Ispirescu's Praslea
Cel Voinic si Merele de Aur

The Ispirescu curve clearly wins.

Figure 30: Creanga's Punguta

cu Doi Bani
The Creanga curve clearly wins.

Figure 31: Creanga's Soacra cu

Trei Nurori
The Creanga curve clearly wins.

Figure 32: Ispirescu's Tinerete
fara Batrinete si Viata fara de

Moarte
The Ispirescu curve clearly loses!

Legend:

Razvan Surdulescu Page 17 12/21/2004

Despite three cases where the results are backwards or inconclusive, unmasking performs
well on this data set! In general, the Creanga curves perform far better than the Ispirescu
curves. It is difficult to attribute a single likely explanation to this given that our stop-
word and stemming approach is far from perfect, and we use a much smaller number of
words per chunk in these experiments (250 vs. 1500 in the English corpus) since the
Romanian texts are much smaller. In sum, any of these factors could contribute to this
behavior.

We run the J48 decision tree algorithm on the set of degradation curves (represented
simply as the set of points that define the curve and a T or F label):

point2 <= 87.142857: T (8.0)
point2 > 87.142857
| point10 <= 85.714286: F (7.0)
| point10 > 85.714286
| | point9 <= 87.142857: T (3.0)
| | point9 > 87.142857: F (6.0/1.0)

The classification criterion for T curves is “point2 <= 87.1 OR (point10 > 85.7 AND
point9 <= 87.14)”. This criterion achieves very high accuracy (91% for T, and 100%
for F) as seen from the confusion matrix:

 a b <-- classified as
 11 1 | a = T
 0 12 | b = F

Overall, unmasking performs well on the Romanian corpus, despite the notable
limitations described above and despite using only a fraction of the training vectors from
the English corpus experiment. This is another point in favor of the robustness and
applicability of the unmasking algorithm.

Discussion
On the positive side, we demonstrated that the algorithm is indeed robust when it comes
to running on texts from another language (Romanian), in the presence of a very
impoverished stop-word and stemming approach, and on a fraction of the number of
feature vectors from the original English corpus experiment.

On the negative side, we were not able to obtain results as impressive as those described
in [KOPP04] in terms of accuracy on the English corpus. Specifically, unmasking does
not work at all in the case of Cooper’s The Spy, and in general our degradation curves are
less well visually and programmatically separable for all the texts by the Bronte sisters.
One likely reason for this is that we were not able to chunk the original texts in the same
number of chunks as the original authors, and the algorithm seems to be sensitive to the
number and sparseness of feature vectors. Another likely reason is that we had to intuit
the settings and architecture for many of the algorithm parameters, as they were not
explicitly described in the original paper, and it is possible that some subtle alteration that

Razvan Surdulescu Page 18 12/21/2004

we did not explore may positively and dramatically influence the performance of the
algorithm.

Overall, the algorithm performs remarkably well on a traditionally difficult problem.
Even in the absence of a negative (non-A) training set, the algorithm is able to recognize
authorship for some unknown text X with very high fidelity. The reason is that the
algorithm looks for the depth of difference between two sets, and uses it to determine
membership in that set, as opposed to relying on external (negative) sets to provide
counter-examples. This method makes few assumptions about how the training set is
represented, and, therefore, the algorithm is very likely easily transferable to other
domains, as seen in the Romanian corpus experiment.

A closely related algorithm in the visual domain is implemented in the Fast
Multiresolution Image Querying11 project. Briefly, in this project a database of images is
reduced to a very coarse wavelet representation, and the user queries this database by
drawing a sketch of the image they wish to find. It turns out that the sketch can be easily
matched against the wavelet thumbnails, so the method has high accuracy and is easy to
use. The idea behind unmasking is similar in spirit: we strip down both the author corpus
and the query text by removing all essential features, and whatever is left can be easily
matched as an indicator of similarity or difference. The unmasking case is, in a way, the
dual of the wavelet problem: for unmasking we remove all major features, whereas for
the wavelet query we remove all minor features.

Future Work
The meta-learner model for the degradation of English curves is clearly different from the
model for the Romanian curves. We suspect that this would likely happen across
domains, but the domain boundaries are unclear: is all English literature one domain, or
are there sub-domains within it? In general, how transferable are the meta-learner rules
from one domain to another?

The size of the chunk is difficult to select a-priori. A chunk that is too high produces too
few high-quality (dense) vectors, whereas a chunk that is too small produces too many
low-quality (sparse) vectors. The algorithm appears to be quite sensitive to the chunk size
and the sparseness of the feature vectors. A set of heuristics has to be developed in order
to make the appropriate choice for this parameter.

Not surprisingly, unmasking depends on eliminating stop words (as explained in the
section on Vocabulary Selection). What is slightly surprising is that unmasking is also
rather dependent on stemming. If we do not stem at all in either the English or the
Romanian corpus experiments, the unmasking accuracy drops dramatically. Conversely,
if we stem (even poorly!) in the Romanian corpus experiment, the accuracy improves
noticeably. It would be illuminating to produce a learning curve where the accuracy of
unmasking is graphed against the quality of stemming to see at what point stemming

11 Fast Multiresolution Image Querying: http://grail.cs.washington.edu/projects/query/

Razvan Surdulescu Page 19 12/21/2004

provides marginal benefits or even gets in the way. It would also be interesting to think
about what stemming would mean in a non-literary domain.

The way we selected among possible choices for the algorithm parameters (e.g. the
vector representation: TF vs. TDF vs. TF-IDF) was by running extensive experiments and
visually comparing the degradation graphs. With more time available, a better way would
be to use statistical significance tests on the accuracy of the meta-learner and
simultaneously search across all parameter combinations. Of particular interest for such
rigorous testing are the feature vector representation techniques and the vocabulary
selection: the authors suggest evenly averaging the word frequency from the positive and
the negative set, regardless of the relative sizes of these two sets, in order to give them
equal weight; perhaps a more refined approach would yield better results?

In [KOPP04 sec. 6], the authors propose an extension to the algorithm where they use
both positive and negative examples (a negative example would be works of authors that
share the same geographical, chronological, and cultural characteristic as the author we
wish to unmask). This extension helps eliminate additional false positives. It would be
interesting to implement this extension and test it on the same corpus of Romanian
literature to see how much it improves the accuracy.

In [KOPP04 sec. 7], the authors apply unmasking to solve an actual literary mystery
involving a Jewish religious text. There are likely many other such controversial
authorship problems (for example Shakespeare vs. Marlowe) and it would useful and fun
to apply unmasking to them and interpret the results.

It would be interesting to apply unmasking to another domain that has nothing to do with
literature, for example music or visual art. The most interesting aspect in such an
experiment would be the representation, chunking, and stemming techniques for these
domains.

Conclusion
We implemented the unmasking algorithm and validated an experiment on an extensive
English corpus as described in [KOPP04]. In the process, we highlighted the parameters
that must be tuned in order to improve the accuracy of the unmasking algorithm. We
performed an additional experiment, on a limited Romanian corpus, and showed that the
performance of unmasking is very robust on a brand new domain, even in the presence of
a significantly impoverished stop-word and stemming scheme for the Romanian
language. This strongly reinforces the idea that unmasking can transfer well to new
domains. Lastly, we suggested a number of important open questions, primarily around
further tuning of parameters that affect the performance of unmasking and around domain
transfer.

Appendix A
The English corpus from [KOPP04]:

Razvan Surdulescu Page 20 12/21/2004

Group Author Book [KOPP04]
Chunks
(word
count 500)

Our #
Chunks
(word count
1500)

Dr. Grimshawe’s Secret 75 43 Hawthorne
House of Seven Gables 63 107
Redburn 51 121 Melville
Moby Dick 88 55
The Last of the Mohicans 49 99
The Spy 63 94

American
Novelists

Cooper

Water Witch 80 95
Walden 49 74 Thoreau
A Week on Concord 50 42
Conduct Of Life 47 40

American
Essayists

Emerson
English Traits 52 65
Pygmalion 44 58
Misalliance 43 75

Shaw

Getting Married 51 133
An Ideal Husband 51 36

British
Playwrights

Wilde
Woman of no Importance 38 20
Agnes Grey 45 21 Anne
Tenant Of Wildfell Hall 84 71
The Professor 51 69 Charlotte
Jane Eyre 84 14

Bronte
Sisters

Emily Wuthering Heights 65 20

Appendix B
The Romanian corpus:

Author Book Chunks

(word count
250)

Soacra cu trei nurori 7
Capra cu trei iezi 8
Punguţa cu doi bani 3
Dănilă Prepeleac 13
Povestea porcului 14

Ion Creanga

Fata babei şi fata moşneagului 6
Tinereţe fără bătrâneţe şi viaţă fără de moarte 11
Ileana Simziana 24
Aleodor Împărat 8
Broasca ţestoasă cea fermecată 9
Lupul cel năzdrăvan şi Făt-Frumos 10

Petre Ispirescu

Prâslea cel voinic şi merele de aur 15

Razvan Surdulescu Page 21 12/21/2004

Appendix C
The following additional resources for this project are available on-line at
http://www.cs.utexas.edu/~surdules/cs391l/final/:

1. Complete source: code.zip. The Java files are in the src subdirectory. The
precompiled binary (unmask.jar) has one dependency (JSAP_1.03a.jar). You can run
the code using Java 1.4.2 or later (http://java.sun.com/j2se/1.4.2/):

Usage: java edu.utexas.cs391l.surdules.Unmask
 <Author> <Text> [--words-chunk <Words Chunk>] [--stop-words
<Stop Words>] [--stemmer <Stemmer>] [--verbose <Verbose>] [--dump <Dump>]

 <Author> The author against whose works we unmask.

 <Text> The text that we unmask against the author.

 [--words-chunk <Words Chunk>] The number words per chunk in the text
 files.

 [--stop-words <Stop Words>] The file containing the stop words.

 [--stemmer <Stemmer>] The stemmer to use for stemming ('English'
 or 'Romanian').

 [--verbose <Verbose>] Turn on logging.

 [--dump <Dump>] Dump vector files created during training
 and testing.

2. The English corpus: gutenberg.zip. The texts for every author are available in
eponymous subdirectories.

3. The Romanian corpus: romania.zip. The texts for every author are available in
eponymous subdirectories.

4. This report in PDF format: report.pdf.

References
[KOPP04] M. Koppel and J. Schler, “Authorship Verification as a One-Class

Classification Problem”, KDD 2004.
[KOPP03] M. Koppel, S. Argamon, and A. R. Shimoni, “Automatically Categorizing

Written Texts by Author Gender”, Literary and Linguistic Computing,
June 2003.

[BRAN02] J. Brank, M. Grobelnik, N. Milić-Frayling, and D. Mladenić, “Feature
Selection Using Linear Support Vector Machines”, Microsoft Research,
Technical Report MSR-TR-2002-63, 12 June 2002.

[SCHO00] B. Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett, “New support
vector algorithms”, Neural Computation, 12, 2000, 1207-1245.

[SCHO01] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson. “Estimating the support of a high-dimensional distribution”,
Neural Computation, 13, 2001, 1443-1471.

