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Introduction 
There are many literary texts whose author’s identity has been lost in time.  Literary 
detectives use historical and stylistic clues to solve such scholarly puzzles, but they rarely 
withstand close scientific scrutiny due to the inherently subjective nature of these 
methodologies. The problem of objectively determining authorship is of great 
importance, both in the literary and historical fields as well as, more broadly, in law 
enforcement (e.g. plagiarism), music, art, and so on. 
 
[KOPP04] introduces a new and promising algorithm, called unmasking, which takes a 
sample X and tells us whether it belongs to a single author A. They call this the 
authorship verification problem. The key difficulty in this problem is that it is impossible 
to generate a representative training set for A vs. non-A, so we cannot use standard 
classification techniques. The key idea in solving this problem is to iteratively evaluate 
the depth of difference between X and A as we remove discriminating features. There is a 
closely related, but significantly easier authorship attribution problem which takes a 
sample X and assigns it to one of multiple given authors using standard classification 
approaches. 
 
In this project, we implement unmasking and meticulously analyze the key parameters 
that affect its performance on the original English corpus, as the description in [KOPP04] 
is terse for some important implementation details. We then evaluate the performance of 
unmasking on a corpus of Romanian literary works, and find that the algorithm is robust 
and performs surprisingly well, despite a very naïve stop-word and grammatical 
framework for the Romanian language. We conclude with a set of open questions and 
future directions. 

Problem Definition and Algorithm 

Task Definition 
We start with an anonymous text X and a set of texts belonging to an author A. We want 
a binary yes/no answer (or a confidence interval) that indicates whether X has been 
written by A. We want the method to depend as little as possible on any particular 
language, genre, or other literary idiosyncrasies, in order to make the result more credible 
(less dependent on subjective features), and also to enhance its applicability to other 
domains. 
 
In this paper, we use the same notation as in [KOPP04]: A denotes the texts written by 
some author, and X denotes the unknown text whose authorship we wish to ascertain. We 
further use the notation AX to denote all the works in the corpus of A (if A did not write 
X), or all the works in the corpus of A except X (if A did write X). In the real world, this 
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distinction is immaterial because X is by definition an anonymous text (it is not known to 
belong to A) so AX will always be congruent to A. The distinction between AX and A is 
important in this paper because, during our experiments, we do know beforehand to 
which A does X belong and we do not wish to include X into the training data for 
determining its own authorship. 
 
The key difficulty in authorship verification is that it is nearly impossible to generate the 
training data. In authorship attribution, we can successfully learn a model of A vs. B. vs. 
C etc., where A, B, and C are authors with well known corpuses. However, in authorship 
verification, we want to learn a model of A vs. non-A, and there is no good, exhaustive, 
and representative definition of non-A. This suggests that we should rely only on positive 
data (text written by A) so we must employ only features from this domain in our 
algorithm. 
 
To further complicate matters, given A and X, it is possible to train a baseline SVM 
([KOPP04 sec. 5.2]) to learn an accurate model of A vs. X (we do not reproduce this 
particular result here because it is peripheral to this report). Even with no tweaking, such 
an SVM will have very high classification accuracy. This means that regardless of 
whether A wrote X or not, we can learn to distinguish A from X with very high accuracy, 
so  any author will appear as very different from X. Conversely, no author will appear as 
any more likely than others to have written X. This suggests that an exact classifier that 
learns A vs. X will not be appropriate so we have to use a more subtle approach. 
 
As we will see later on, it is in fact possible to build a classifier that uses only positive 
data and employs a subtle classification technique to ascribe authorship to X. Almost by 
definition, such a classifier can be easily applied to other similar problems in completely 
different areas, which makes it even more appealing. To wit, we apply this classifier to a 
body of Romanian text and show that it performs very well despite the fact that we used a 
limited set of stop words and a very impoverished word stemmer for the Romanian 
language; this validates the assertion that the algorithm is robust and does not depend on 
diminutive features of our datasets. 

Algorithm Idea 
Given an SVM model for AX vs. X, we rank all the input features used in creating the 
model. If we iteratively remove the most important features from being used in the SVM 
model, we observe a very peculiar behavior: if A did write X, the classification accuracy 
decreases dramatically as we remove features. In other words, A and X become more 
alike. If, however, A did not write X, then the classification accuracy stays roughly high 
as we remove features. In other words, A and X remain relatively different. This is the 
core of the unmasking algorithm. 
 
The idea behind unmasking makes sense intuitively: if A wrote X, there are few 
important input features that set them apart (i.e. there are fundamental similarities that 
underlie authorship even if the author’s style may have changed over time). These few 
important features do most of the work in training an accurate SVM for A vs. X; once 
they are removed, A and X start to look increasingly the same. Conversely, if there are no 
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fundamental similarities, A and X continue to look different even as features are 
removed, which suggests that A probably did not write X. 
 
The speed with which A and X start to look the same is the key indicator for authorship. 
We will demonstrate this phenomenon visually, on the graphs below, as well as 
empirically, by means of a meta-learner that runs on the classification accuracy 
degradation curves. 
 
Note that all assumptions about how to represent the feature vectors used in training the 
SVM are largely orthogonal to the essence of the algorithm (comparing the speed of 
degradation). Although the actual value of the degradation speed is naturally dependent 
on the choice and representation of features (we will see concretely in subsequent 
sections), the algorithm will run the same no matter what the feature representation. This 
is a powerful characteristic, for it allows unmasking to be run against many other 
problem domains. 

Algorithm Definition 
Here is the algorithm definition (based on the description in [KOPP04 sec. 5.1, 5.3]). The 
algorithm is provided in pseudo-code format, the reader is strongly encouraged to peruse 
the attached source (Unmask.java) for the complete details: 
 
1. Generate the vocabulary 

1.1. Compute the frequency for all the words in AX 
1.2. Compute the frequency for all the words in X 
1.3. Create a list of all the common words between AX and X 
1.4. Sort it by the average of their frequencies 
1.5. Select the top most frequent 250 words as the problem vocabulary 

2. Generate the train vectors 
2.1. For every file in AX 

2.1.1. Split text in chunks of at least 500 words without breaking paragraphs 
2.1.2. For every chunk 

2.1.2.1.Output a vector with label +1 
3. Generate the test vectors 

3.1. For every file in X 
3.1.1. Split text in chunks of at least 500 words without breaking paragraphs 
3.1.2. For every chunk 

3.1.2.1.Output a vector with label -1 
4. Unmask 

4.1. For every feature removal iteration 
4.1.1. For every cross validation fold 

4.1.1.1.Exclude the features removed thus far from this fold’s data 
4.1.1.2.Train a linear SVM model on this fold’s data 
4.1.1.3.Compute the accuracy of this SVM on this fold’s data 
4.1.1.4.Find the 3 strongest positive and negative features 
4.1.1.5.Add them to the exclusion list 

4.1.2. Output the average of the SVM accuracy for this iteration 
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Since the code written for [KOPP04] is not available, we implemented a version of the 
unmasking algorithm above from scratch for this project. As you read the algorithm 
pseudo-code above, the following questions come to mind: 
 

A. What is the definition of frequency (1.1 and 1.2 above): is it the ratio of term 
count to document length (TDF) or term count to maximum term count (TF)? 

B. Do we employ a stop word list and stem the words1 before computing their 
frequency (1.1 and 1.2)? 

C. Do we include actual words or their stems in the vocabulary (1.3)? 
D. Does the word count for every chunk include stop words or just vocabulary words 

(2.1.1 and 3.1.1)? 
E. The paragraph structure of various texts is very different; do the chunks end up 

being approximately equal, and does it matter (2.1.1 and 3.1.1)? 
F. What is the feature vector representation (2.1.2.1 and 3.1.2.1): is it binary, TF, or 

TF-IDF? 
G. Do the unmasking SVM experiments use a one-class SVM or a multi-class C-

SVC (4.1.1.2)? 
H. How do we determine the optimal SVM parameters, in particular C and γ 

(4.1.1.2)? 
 
In our initial unmasking implementation, we selected reasonable, intuitive answers to the 
questions above, but the accuracy of this implementation was unsatisfactory (nowhere 
near close to the accuracy in [KOPP04]). We used the same SVM library2 and the same 
English corpus (Appendix A) as [KOPP04]. All the texts in the English corpus came 
from Project Gutenberg3, except the Emerson texts that came from The University of 
Adelaide eText Library4 since they are not available at Project Gutenberg. All these texts 
were pre-processed by removing automatic copyright pre- and post-ambles, page 
markers, and other delimiters. 
 
We spent a great deal of time building and tweaking experiments in order to better 
answer the questions above and improve the accuracy of unmasking. We detail some of 
this effort in the following subsections. 

Vocabulary Selection 
To build the vocabulary, we have to answer the following questions: 
 
What is the definition of frequency (1.1 and 1.2 above): is it the ratio of term count to 
document length (TDF) or term count to maximum term count (TF)? 
 

                                                 
1 Although stop words and stemming are standard practice in text classification problems, we could not be 
sure of its effect in this text verification problem. See the important differences and difficulties between 
classification/attribution and verification in the previous sections. 
2 LIBSVM 2.6: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
3 Project Gutenberg: http://www.gutenberg.org/ 
4 The University of Adelaide eText Library: http://etext.library.adelaide.edu.au/e/emerson/ralph_waldo/ 
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Since the vocabulary consists of the top 250 words with highest average frequency, the 
choice of frequency will produce different vocabularies. In practice, the actual words in 
vocabularies produced with TDF vs. TF are largely the same (they differ in fewer than 10 
words), so the unmasking accuracy numbers vary little between these two approaches. 
The length of A can be much larger than the length of X, so the TDF approach produces 
frequency numbers that are smaller for A vs. X. In contrast, the most frequent term in A 
may not be much larger than the most frequent term in X, so the TF approach produces 
frequency numbers that are more similar for A vs. X. We want to have the length of the 
text reflected in the vocabulary selection, so we prefer the TDF approach. 
 
Do we employ a stop word list and stem the words before computing their frequency (1.1 
and 1.2)? Do we include actual words or their stems in the vocabulary (1.3)? 
  
We used a standard English Porter stemmer and a list of 524 English stop words5 (see 
stopwords.en.lst). Stemming significantly improves accuracy because by removing a 
feature (a word stem) we remove all the words that originate in that stem so unmasking 
converges within a few feature removal rounds (A and X look similar faster). It is 
possible that tense selection, and other morphological features that are collapsed by 
stemming differentiate between authors, but we find that eventually removing these 
morphological features achieves the same result as stemming, it just takes longer. 
Eliminating stop words improves accuracy because they are overwhelmingly more 
frequent than non-stop words, so they conceal words that might otherwise capture 
characteristics unique to each author; furthermore, these words are used similarly by 
English authors so they do not reflect authorship. 

Vector Representation 
To build the feature vectors, we have to answer the following questions: 
 
Does the word count for every chunk include stop words or just vocabulary words (2.1.1 
and 3.1.1)? 
 
We included all consecutive words towards the size of the chunk. Intuitively, this should 
provide a more representative sample of vectors that describes the text since the 
distribution of feature words is different from the distribution of all the words. More 
importantly, this will provide more vectors, which means more training data: a chunk that 
consists only of 500 feature words will be much larger (so there will be fewer of them) 
than a chunk that consists of 500 consecutive words. The sparseness of the feature 
vectors (the number of zero entries) is also affected by the chunk word count: if we only 
consider vocabulary words, the feature vectors end up being denser. Naturally, this 
affects the accuracy of unmasking significantly. 
 
The paragraph structure of various texts is very different; do the chunks end up being 
approximately equal, and does it matter (2.1.1 and 3.1.1)? 
 

                                                 
5 The stop words came from the Rainbow library: http://www.cs.cmu.edu/~mccallum/bow/rainbow/  
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The chunks do not end up being approximately equal. More importantly, the number of 
chunks we obtain with the splitting approach above ends up being very different than the 
number of chunks reported by the authors (Appendix A). The algorithm accuracy appears 
to be sensitive to the size of the chunk: we experimented with sizes from 500 to 2000 and 
ended up settling on 1500 as the optimal chunk size for this problem space. Of interest is 
the fact that the works by James F. Cooper (The Last of the Mohicans, The Spy, Water 
Witch) have roughly the same paragraph structure and size (866k, 878k, and, 
respectively, 907k), and end up with roughly the same number of chunks in our 
implementation (95, 94, and, respectively, 95). In the authors report, however (Appendix 
A), they end up with a very different number of chunks (49, 63, and, respectively, 80) 
which is inconsistent both among the texts as well as with any chunk size from 500 to 
2000. Since the algorithm accuracy appears to be sensitive to the size of the chunk, this is 
an area where additional experimentation would be beneficial. 
 
What is the feature vector representation (2.1.2.1 and 3.1.2.1): is it binary, TF, or TF-
IDF? 
 
The TF-IDF representation is favored among document retrieval and text classification 
approaches, with the binary representation being a close second. However, in this 
experiment, the TF representation turns out to provide better accuracy than either of the 
other two. The goal of the IDF term (in TF-IDF) is to dampen the importance of words 
that appear in many documents and highlight the importance of words that appear in few 
documents. Intuitively, we believe that the speed with which unmasking converges is 
intimately tied to the frequency of words: by removing frequent words, the classification 
accuracy decreases rapidly if A wrote X, and stays roughly the same otherwise. By 
making all the words look and behave more like each other in TF-IDF, we are essentially 
putting the breaks on unmasking and making it converge more slowly. It is possible that 
by running more unmasking iterations with TF-IDF we could obtain the same unmasking 
accuracy as by running fewer unmasking iterations with TF, but we did not explore this 
avenue fully. 

SVM Setup 
To build the feature vectors, we have to answer the following questions: 
 
Do the unmasking SVM experiments use a one-class SVM or a multi-class C-SVC 
(4.1.1.2)? 
 
In [KOPP04 sec. 5.3] the authors train a one-class RBF kernel SVM ([SCHO00] and 
[SCHO01]) for the baseline experiments (AX vs. X), but in [KOPP04 sec. 5.5] they use a 
linear kernel SVM for the unmasking experiments (without specifying whether it’s one-
class or C-SVC) and perform cross-validation to assess its accuracy. After some 
experimentation, we settled on the following approach: 
 

1. Use a linear C-SVC. 
2. Label all the AX vectors with +1, and all the X vectors with -1. 
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3. For cross-validation, shuffle and fold the data once at the beginning, then preserve 
the same folds across all the feature removal iterations. 

4. The accuracy of cross-validation is the misclassification rate of the C-SVC (the 
rate of misclassifying a -1 as +1 or vice-versa), which is precisely the extent to 
which the algorithm can tell X and AX apart. 

 
How do we determine the optimal SVM parameters, in particular C and γ (4.1.1.2)? 
 
The C-SVC parameters (in particular the cost C and the kernel function γ) are left at the 
default (C = 1.0, γ = 1 / k where k is the number of features in the data). The way we 
determined that the defaults work best is by performing an exhaustive grid search over a 
set of possible (C, γ) pairs6: 

1. Vary C over {2-5, 2-4, 2-3, …, 20 = 1, …, 215} using step 3 (pick every 3rd element) 
2. Vary γ over {23, 22, …, 2-15} using step 3 (pick every 3rd element) 
3. Train a C-SVC using the (C, γ) parameters above and assess its accuracy via 3-

fold cross-validation. 
4. Select the (C, γ) pair that maximizes the cross-validation accuracy. 

 
In a majority of cases, the highest accuracy was achieved by using the default (C = 1.0, γ  
= [very small]) combination. The fact that the defaults tend to work well is encouraging 
because running the grid search for every unmasking experiment (in order to determine 
the optimal parameters) takes about 30 times longer than running the regular experiment 
(circa 36 hours), so it is unfeasible in practice. 
 
Given that we employ a linear kernel SVM, we use the definition of feature weight from 
[BRAN02 sec. 3.1.3]. We compute the normal vector ∑=

i
iii yw xα , where α is the 

SVM model coefficient for the given support vector, y is the vector label (+1 or -1) and x 
is the support vector. This normal vector represents the normal to the hyperplane that 
separates the two classes. In this weight vector, the magnitude of every entry is the 
weight of the corresponding feature. In a related work ([KOPP03 sec. 6]) the authors 
suggest scaling the feature weight by its frequency (TDF, TF or TF-IDF). Our 
experiments suggest that leaving the weight unaltered works best; this is probably 
because the SVM model already accounts for word frequency in the way it generates the 
support vectors and, therefore, in the way the normal weight vector comes out. 

Updated Algorithm Definition 
Based of the observations above, here is the updated algorithm definition (changes 
highlighted in red): 
 
1. Generate the vocabulary 

1.1. Compute the TDF frequency for all the non-stop word stems in AX 
1.2. Compute the TDF frequency for all the non-stop word stems in X 
1.3. Create a list of all the common words between AX and X 

                                                 
6 Parameter grid search is LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/  
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1.4. Sort it by the average of their TDF frequencies 
1.5. Select the top most frequent 250 words as the problem vocabulary 

2. Generate the train vectors 
2.1. For every file in AX 

2.1.1. Split text in chunks of at least 500 words without breaking paragraphs 
2.1.2. For every chunk 

2.1.2.1.Output a TF vector using word stems with label +1 
3. Generate the test vectors 

3.1. For every file in X 
3.1.1. Split text in chunks of at least 500 words without breaking paragraphs 
3.1.2. For every chunk 

3.1.2.1.Output a TF vector using word stems with label -1 
4. Unmask 

4.1. For every feature removal iteration 
4.1.1. For every cross validation fold 

4.1.1.1.Exclude the features removed thus far from this fold’s data 
4.1.1.2.Train a linear C-SVC model on this fold with default parameters 
4.1.1.3.Compute the accuracy of this C-SVC on this fold’s data 
4.1.1.4.Find the 3 strongest positive and negative features using only the SVM 

weight vector and no scaling 
4.1.1.5.Add them to the exclusion list 

4.1.2. Output the average of the C-SVC accuracy for this iteration 

Meta-learner 
The output from the unmasking algorithm is a set of points that defines a degradation 
curve for the specified AX, X pair as we iteratively remove features from the model. This 
curve is labeled as T (if AX wrote X) or F (if AX did not write X). We use another meta-
learner to learn the labels for these curves and apply to future experiments. 
 
In [KOPP04 sec. 5.4], the authors suggest representing each curve as a set of tuples 
where for every feature removal iteration i, the tuples denote: 

• The accuracy after i elimination rounds 
• The accuracy difference between round i and i + 1 
• The accuracy difference between round i and i + 2 
• The ith highest accuracy drop in one iteration 
• The ith highest accuracy drop in two iterations 

 
The authors learn that the following two rules achieve 100% accuracy on the T curves 
and 97.3% accuracy on the F curves: 

• Accuracy after 6 elimination rounds if less than 89% 
• The second highest accuracy drop in two iterations is greater than 16% 

 
We briefly experimented with a simple J48 decision tree learner, and found that it has 
good classification accuracy on these curves, both for the original English corpus and for 
the test Romanian corpus. The details of these experiments are presented in the next 
section. 
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Experimental Evaluation 

Methodology 
To validate our unmasking implementation, we tested on the same English corpus as the 
one used in [KOPP04] (see Appendix A). Visually, we would expect one curve to sharply 
decrease as it moves to the right (the curve of the actual author of X) while the other 
curves should stay mostly flat or decrease slightly as they move to the right (the curve of 
all the other authors that did not write X). Experimentally, the meta-learner has its own 
accuracy of detecting the curve that degrades the fastest, which we compare to the results 
in [KOPP04] and present as the conclusion to the individual degradation experiments. 
 
To determine how applicable unmasking is to other problems, we tested on a corpus or 
Romanian literary texts (see Appendix B). There were four significant challenges to 
using Romanian text in this experiment: 
 

1. Text availability: There are few long digital Romanian literary texts available on-
line. We selected a set of folk fairy tales7 for this experiment. Both these authors 
are fixtures of Romanian literature, and folk fairy tales are some of the oldest and 
most prevalent forms of Romanian literature. We believe that this body of work, 
although limited, is sufficiently representative of Romanian literature in general. 

2. Spelling: In 1989, after the change of regime in Romania, the official spelling 
rules were altered to the way they were before 1945. Many extant digital texts 
may not have been updated to reflect these spelling changes. This could severely 
influence the accuracy of our unmasking algorithm if we tried to unmask a new-
style text against an old-style author corpus, with different spelling. Romanian has 
a number of diacritic characters that do not exist in English (â, î, ă, ş, and ţ) and 
very few digital texts go to the trouble of representing these accurately in 
Unicode. This is another reason why it is important to use text from corpuses that 
were represented the same way. 

3. Stop words: There is no known existing set of Romanian stop-words, so we used 
a direct translation of the set of English stop-words. Many English stop-words 
(such as “please” or “mostly”) translate to multiple-word Romanian stop-phrases 
(such as “te rog” or, respectively, “în cea mai mare parte”, see 
stopwords.ro.lst for details). Changing the chunking algorithm to account for 
stop-phrases is sufficiently complex that we decided to not do it in this project due 
to time constraints. Fortunately, this turns out to have little effect on accuracy, 
since sufficiently many one-word English stop-words translate to one-word 
Romanian stop-words. 

4. Grammar: The Romanian grammar is similar in complexity to Latin, in that it 
has genders, declinations, highly irregular verbs, and many more verb tenses than 
English. Implementing even a moderately accurate Romanian stemmer is 
incredibly difficult, far more so than for English. The function of the word 
(adjective vs. noun vs. etc.) in the context determines its stemming rules. 
Furthermore, if the appropriate diacritics are not used, words can become even 

                                                 
7 Romanian Folk Fairy Tales: http://www.romanianvoice.com/culture/povesti/index.php 
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more ambiguous, which makes stemming more difficult (for example, “tari” 
means “strong” [adjective, plural, masculine], while “ţări” means “countries” 
[noun, plural, feminine]). For this project, we implemented a very simple 
Romanian stemmer that simply eliminates (or in a few cases replaces) the word 
endings that are unambiguously known to have a specific morphological function 
(see StemmerRo.java for details). 

 
Despite these severely simplifying assumptions in unmasking Romanian text, we believe 
that the performance of unmasking on this new body of work is very telling. Romanian 
folk stories tend to have very distinctive regional and temporal flavor, far more so than 
the texts from the original English corpus, so we are interested in determining if 
unmasking is really unaffected by these literary styles. Furthermore, the first known text 
written in Romanian was a letter8 from the year 1521, using the Cyrillic alphabet (the 
Latin alphabet was adopted many years later); prior to this, there is a lot of evidence of 
oral literature and poetry, but nothing written down. As a result, we believe that there is 
significant variance in writing styles across preserved Romanian literary texts, which 
makes them a particularly good test for unmasking. We present the results for the 
Romanian corpus in the same way as for the English corpus: visually, in terms of 
degradation graphs, and experimentally, by using the meta-learner described above. 

Results 

English Corpus 
See Appendix A for the contents of the original English corpus. At a high level, there are 
two cases where unmasking completely fails to distinguish between AX and X: Figure 6: 
Cooper The Spy and Figure 17: Shaw Pygmalion. In [KOPP04 sec. 5.5], the authors 
indicate that their classifier also missed Shaw’s Pygmalion, so this is encouraging, 
however the fact that Cooper’s The Spy is also utterly misclassified is disconcerting. 
Furthermore, the quality of our other degradation curves is not always very good 
(visually speaking). Of particular interest is the fact that almost all the Bronte sisters 
curves9 start out fairly well separated from the other degradation curves, but then flatten 
out, while the other degradation curves descend past them (see Figure 7: Anne Bronte 
Agnes Gray, Figure 20: Anne Bronte Tenant of Wildfell Hall, Figure 13: Charlotte Bronte 
Jane Eyre, and Figure 18: Charlotte Bronte The Professor). This indeed very peculiar 
behavior, both because it does not match our expectations, and also because the 
degradation pattern is so similar among these related authors! 
 
In the interest of time, we did not analyze all the departures from expected behavior noted 
above; however we did analyze in detail the case of Cooper’s The Spy as it is the most 
aberrant of them all (based on the degradation curves in Figure 6, it would seem that The 
Spy has been authored by a majority of the authors in our corpus, so strong and similar is 
the degradation of these authors’ curves). We created a naïve, yet useful framework for 
manually analyzing The Spy and for understanding its unmasking behavior. 
                                                 
8 The Letter of Neacşu from Câmpulung: http://www.cimec.ro/Istorie/neacsu/eng/default.htm  
9 The Jane Eyre unmasking scenario is missing, since we only have one Jane Eyre book in the corpus 
(Wuthering Heights), so we cannot build a degradation curve of Wuthering Heights against itself. 
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We select the features that were consistently removed in all the 10 feature removal 
iterations. By consistently we mean that a feature was selected for removal in at least 5 of 
the 10 cross-validation runs executed in every feature removal iteration. The idea is that 
these features are (by a majority vote) more likely to discriminate among the texts 
considered than the other features. We then compute the delta between the occurrence 
count of these features in AX and X and we look for patterns. Naturally, we realize that 
the count is a poor proxy for SVM feature strength; however we believe it is sufficient for 
this naïve, manual analysis. 
 
The size of the delta is important: 

• If the delta is high, then this feature is probably a strong discriminator 
• If the deltas are high and stay high, then there are lots of strong discriminators, so 

the X was probably not written by A 
• If the deltas are high but they drop quickly, there are few strong discriminators. so 

X was probably written by A 
 
The relative placement of the delta curves between two author candidates (A1 and A2) 
and X is important: 

• If one delta curve (say A1) is consistently above the other (A2), then one relative 
discriminator strength is higher, so X is unlikely to have been written by A1 and 
more likely to have been written by A2 

• If the two delta curves are indistinguishable, then the relative discriminator 
strength is the same, so we cannot be sure about authorship 

 
Lastly, we look at how many discriminators there are in common between A1 and A2: 

• If there are lots of common discriminators, then we cannot make a strong 
statement about authorship, since the same discriminators can be used to 
distinguish between A1 and A2 

• If there are few common discriminators, then we can be more confident about 
attributing authorship 

 
We apply all these observations, in concert, to the scenario for The Spy (which is 
particularly aberrant) as well to the scenario of Walden (which is particularly regular). 
Here are the delta curves for Cooper vs. The Spy and Charlotte Bronte vs. The Spy: 
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Delta Curves for The Spy
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Remember that in Figure 6 the corresponding degradation curves are almost 
indistinguishable. In this case, the two delta curves start out fairly close together, and 
then quickly merge. This means that the discriminator strength (as evidenced by the 
feature delta) is roughly the same between Cooper and Charlotte Bronte, so it is no 
surprise that we cannot ascribe authorship to The Spy when pitted against these two 
authors. 
 
Now take a look at the delta curves for Thoreau vs. Walden and Hawthorne vs. Walden: 

Delta Curves for Walden
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In this case, the two delta curves start out fairly far apart, and then continue to stay 
separated. This means that the discriminator strength (as evidenced by the feature delta) 
is fairly different between Thoreau and Hawthorne, so it is no surprise that we can safely 
ascribe authorship to Walden. Furthermore, there are 12 common discriminators between 
Thoreau and Hawthorne, whereas there are 25 common discriminators between Cooper 
and Charlotte Bronte. The fact that there are fewer common discriminators between 
Thoreau and Hawthorne means that they are more likely to be separated via unmasking 
than Cooper and Charlotte Bronte. 
 
Leaving statistics and graphs aside for a moment, what is the real (literary or stylometric) 
reason why The Spy would appear so similar to two completely different authors (Cooper, 
the original author, and Charlotte Bronte)? The most likely explanation is that the bag-of-
words approach it too coarse and fails to capture subtler idiosyncrasies of these authors’ 
writing styles. Both Cooper and Charlotte Bronte lived and wrote in the first half of the 
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19th century, and although the former was American and the latter British, perhaps they 
shared some common characteristics of the literary currents of the time. 
 
We ran the Weka10 J48 decision tree algorithm on the set of degradation curves 
(represented simply as the set of points that define the curve and a T or F label): 
 
point7 <= 75.714286 
|   point7 <= 71.333333: T (11.0) 
|   point7 > 71.333333 
|   |   point7 <= 72.5: F (4.0/1.0) 
|   |   point7 > 72.5: T (3.0) 
point7 > 75.714286: F (182.0/5.0) 
 
The classification criterion for T curves is “point7 <= 71.3 OR (point7 > 72.5 AND 
point7 < 75.7)”. This is not as simple or as intuitive as the criterion from [KOPP04] 
(“Accuracy after 6 elimination rounds if less than 89%” AND “The second highest 
accuracy drop in two iterations is greater than 16%”), but it achieves reasonably high 
accuracy (70% for T, and 100% for F) as seen from the confusion matrix: 
 
   a   b   <-- classified as 
  14   6 |   a = T 
   0 180 |   b = F 
 
Interestingly, our J48 classifier was able to distinguish among these curves by means of a 
single point (point7), which happens to be the same point that discriminates in [KOPP04] 
(“after 6 elimination rounds”). The rule that involves point7 above spans two intervals as 
opposed to just one (as in [KOPP04]). Since we did not represent the accuracy drop in 
our degradation curves’ feature vectors, we could not involve these drops in the J48 rules, 
but it is intuitively likely that these additional degradation features would provide a 
stronger, more accurate meta-classification criterion.  
 
We are now going to look at the complete set of degradation graphs obtained on the 
English corpus. The important thing to look for in these graphs is whether there is one 
curve that is clearly separated and under all the other curves (the curve of the actual 
author of our mystery text) while all the other curves stay roughly flat. The better this 
curve separates from the others, the more accurate and confident is our authorship 
verification result. The legend for these curves is presented after all the graphs. 

                                                 
10 Weka, Data Mining Software in Java: http://www.cs.waikato.ac.nz/ml/weka/  
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Figure 1: Cooper Water Witch 

The Cooper curve is fairly well 
separated, but strong degradation 
occurs everywhere. 

Figure 2: Thoreau A Week On 
Concord 

The Thoreau curve is very well 
separated, but the Emerson curve 
also breaks from the rest. 

Figure 3: Hawthorne House of 
Seven Gables 

The Hawthorne curve is well 
separated, but strong degradation 
occurs everywhere. 

 
Figure 4: Hawthorne Dr. 

Grimshawe's Secret 
The Hawthorne curve is very well 
separated. 

Figure 5: Melville Redburn 
The Melville curve is well 
separated, but strong degradation 
occurs everywhere. 

Figure 6: Cooper The Spy 
There is no clear separation among 
the curves! 

 
Figure 7: Anne Bronte Agnes 

Gray 
The Anne Bronte curve starts out 
fairly well separated, but all the 
other curves catch up. 

Figure 8: Wilde A Woman of No 
Importance 

The Wilde curve is very well 
separated. 

Figure 9: Emerson Conduct of 
Life 

The Emerson curve is very well 
separated. 

 
Figure 10: Emerson English 

Traits 
The Emerson curve is well 
separated, but jittery. 

Figure 11: Shaw Getting Married 
The Shaw curve is fairly well 
separated. 

Figure 12: Wilde An Ideal 
Husband 

The Wilde curve is very well 
separated. 
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Figure 13: Charlotte Bronte 

Jane Eyre 
The Charlotte Bronte curve starts 
out fairly well separated, but all 
the other curves catch up. 

Figure 14: Melville Moby Dick 
The Melville curve is very well 
separated. 

Figure 15: Cooper The Last of 
the Mohicans 

The Cooper curve is well 
separated. 

 
Figure 16: Shaw Misalliance 

The Shaw curve is fairly well 
separated. 

Figure 17: Shaw Pygmalion 
There is no clear separation among 
the curves! 

Figure 18: Charlotte Bronte The 
Professor 

The Charlotte Bronte curve starts 
out fairly well separated, but all 
the other curves catch up. 

 
Figure 19: Thoreau Walden 

The Thoreau curve is very well 
separated. 

Figure 20: Anne Bronte Tenant 
of Wildfell Hall 

The Anne Bronte curve starts out 
fairly well separated, but all the 
other curves catch up. 

 
Legend: 

 

Romanian Corpus 
See (Appendix B) for the contents of the Romanian corpus. Here are the degradation 
curves: 
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Figure 21: Ispirescu's Aleodor 

Imparat 
The Ispirescu curve loses! 

 
Figure 22: Ispirescu's Broasca 

Testoasa cea Fermecata 
The two curves are difficult to 
distinguish. 

Figure 23: Creanga's Capra cu 
Trei Iezi 

The Creanga curve clearly wins. 

 
Figure 24: Creanga's Danila 

Prepeleac 
The Creanga curve clearly wins. 

 
Figure 25: Creanga's Fata Babei 

si Fata Mosneagului 
The Creanga curve clearly wins. 

Figure 26: Ispirescu's Ileana 
Simziana 

The Ispirescu curve clearly wins. 

 
Figure 27: Ispirescu's Lupul cel 

Nazdravan 
The Ispirescu curve starts out 
well, but the Creanga curve 
catches up. 

 
Figure 28: Creanga's Povestea 

Porcului 
The Creanga curve clearly wins. 

Figure 29: Ispirescu's Praslea 
Cel Voinic si Merele de Aur 

The Ispirescu curve clearly wins. 

 
Figure 30: Creanga's Punguta 

cu Doi Bani 
The Creanga curve clearly wins. 

 
Figure 31: Creanga's Soacra cu 

Trei Nurori 
The Creanga curve clearly wins. 

Figure 32: Ispirescu's Tinerete 
fara Batrinete si Viata fara de 

Moarte 
The Ispirescu curve clearly loses! 

Legend: 
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Despite three cases where the results are backwards or inconclusive, unmasking performs 
well on this data set! In general, the Creanga curves perform far better than the Ispirescu 
curves. It is difficult to attribute a single likely explanation to this given that our stop-
word and stemming approach is far from perfect, and we use a much smaller number of 
words per chunk in these experiments (250 vs. 1500 in the English corpus) since the 
Romanian texts are much smaller. In sum, any of these factors could contribute to this 
behavior. 
 
We run the J48 decision tree algorithm on the set of degradation curves (represented 
simply as the set of points that define the curve and a T or F label): 
 
point2 <= 87.142857: T (8.0) 
point2 > 87.142857 
|   point10 <= 85.714286: F (7.0) 
|   point10 > 85.714286 
|   |   point9 <= 87.142857: T (3.0) 
|   |   point9 > 87.142857: F (6.0/1.0) 
 
The classification criterion for T curves is “point2 <= 87.1 OR (point10 > 85.7 AND 
point9 <= 87.14)”. This criterion achieves very high accuracy (91% for T, and 100% 
for F) as seen from the confusion matrix: 
 
  a  b   <-- classified as 
 11  1 |  a = T 
  0 12 |  b = F 
 
Overall, unmasking performs well on the Romanian corpus, despite the notable 
limitations described above and despite using only a fraction of the training vectors from 
the English corpus experiment. This is another point in favor of the robustness and 
applicability of the unmasking algorithm. 

Discussion 
On the positive side, we demonstrated that the algorithm is indeed robust when it comes 
to running on texts from another language (Romanian), in the presence of a very 
impoverished stop-word and stemming approach, and on a fraction of the number of 
feature vectors from the original English corpus experiment. 
 
On the negative side, we were not able to obtain results as impressive as those described 
in [KOPP04] in terms of accuracy on the English corpus. Specifically, unmasking does 
not work at all in the case of Cooper’s The Spy, and in general our degradation curves are 
less well visually and programmatically separable for all the texts by the Bronte sisters. 
One likely reason for this is that we were not able to chunk the original texts in the same 
number of chunks as the original authors, and the algorithm seems to be sensitive to the 
number and sparseness of feature vectors. Another likely reason is that we had to intuit 
the settings and architecture for many of the algorithm parameters, as they were not 
explicitly described in the original paper, and it is possible that some subtle alteration that 
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we did not explore may positively and dramatically influence the performance of the 
algorithm. 
 
Overall, the algorithm performs remarkably well on a traditionally difficult problem. 
Even in the absence of a negative (non-A) training set, the algorithm is able to recognize 
authorship for some unknown text X with very high fidelity. The reason is that the 
algorithm looks for the depth of difference between two sets, and uses it to determine 
membership in that set, as opposed to relying on external (negative) sets to provide 
counter-examples. This method makes few assumptions about how the training set is 
represented, and, therefore, the algorithm is very likely easily transferable to other 
domains, as seen in the Romanian corpus experiment. 
 
A closely related algorithm in the visual domain is implemented in the Fast 
Multiresolution Image Querying11 project. Briefly, in this project a database of images is 
reduced to a very coarse wavelet representation, and the user queries this database by 
drawing a sketch of the image they wish to find. It turns out that the sketch can be easily 
matched against the wavelet thumbnails, so the method has high accuracy and is easy to 
use. The idea behind unmasking is similar in spirit: we strip down both the author corpus 
and the query text by removing all essential features, and whatever is left can be easily 
matched as an indicator of similarity or difference. The unmasking case is, in a way, the 
dual of the wavelet problem: for unmasking we remove all major features, whereas for 
the wavelet query we remove all minor features. 

Future Work 
The meta-learner model for the degradation of English curves is clearly different from the 
model for the Romanian curves. We suspect that this would likely happen across 
domains, but the domain boundaries are unclear: is all English literature one domain, or 
are there sub-domains within it? In general, how transferable are the meta-learner rules 
from one domain to another? 
 
The size of the chunk is difficult to select a-priori. A chunk that is too high produces too 
few high-quality (dense) vectors, whereas a chunk that is too small produces too many 
low-quality (sparse) vectors. The algorithm appears to be quite sensitive to the chunk size 
and the sparseness of the feature vectors. A set of heuristics has to be developed in order 
to make the appropriate choice for this parameter. 
 
Not surprisingly, unmasking depends on eliminating stop words (as explained in the 
section on Vocabulary Selection). What is slightly surprising is that unmasking is also 
rather dependent on stemming. If we do not stem at all in either the English or the 
Romanian corpus experiments, the unmasking accuracy drops dramatically. Conversely, 
if we stem (even poorly!) in the Romanian corpus experiment, the accuracy improves 
noticeably. It would be illuminating to produce a learning curve where the accuracy of 
unmasking is graphed against the quality of stemming to see at what point stemming 

                                                 
11 Fast Multiresolution Image Querying: http://grail.cs.washington.edu/projects/query/ 
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provides marginal benefits or even gets in the way. It would also be interesting to think 
about what stemming would mean in a non-literary domain. 
 
The way we selected among possible choices for the algorithm parameters (e.g. the 
vector representation: TF vs. TDF vs. TF-IDF) was by running extensive experiments and 
visually comparing the degradation graphs. With more time available, a better way would 
be to use statistical significance tests on the accuracy of the meta-learner and 
simultaneously search across all parameter combinations. Of particular interest for such 
rigorous testing are the feature vector representation techniques and the vocabulary 
selection: the authors suggest evenly averaging the word frequency from the positive and 
the negative set, regardless of the relative sizes of these two sets, in order to give them 
equal weight; perhaps a more refined approach would yield better results? 
 
In [KOPP04 sec. 6], the authors propose an extension to the algorithm where they use 
both positive and negative examples (a negative example would be works of authors that 
share the same geographical, chronological, and cultural characteristic as the author we 
wish to unmask). This extension helps eliminate additional false positives. It would be 
interesting to implement this extension and test it on the same corpus of Romanian 
literature to see how much it improves the accuracy. 
 
In [KOPP04 sec. 7], the authors apply unmasking to solve an actual literary mystery 
involving a Jewish religious text. There are likely many other such controversial 
authorship problems (for example Shakespeare vs. Marlowe) and it would useful and fun 
to apply unmasking to them and interpret the results. 
 
It would be interesting to apply unmasking to another domain that has nothing to do with 
literature, for example music or visual art. The most interesting aspect in such an 
experiment would be the representation, chunking, and stemming techniques for these 
domains. 

Conclusion 
We implemented the unmasking algorithm and validated an experiment on an extensive 
English corpus as described in [KOPP04]. In the process, we highlighted the parameters 
that must be tuned in order to improve the accuracy of the unmasking algorithm. We 
performed an additional experiment, on a limited Romanian corpus, and showed that the 
performance of unmasking is very robust on a brand new domain, even in the presence of 
a significantly impoverished stop-word and stemming scheme for the Romanian 
language. This strongly reinforces the idea that unmasking can transfer well to new 
domains. Lastly, we suggested a number of important open questions, primarily around 
further tuning of parameters that affect the performance of unmasking and around domain 
transfer. 

Appendix A 
The English corpus from [KOPP04]: 
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Group Author Book [KOPP04] 
# Chunks 
(word 
count 500) 

Our # 
Chunks 
(word count 
1500) 

Dr. Grimshawe’s Secret  75 43 Hawthorne 
House of Seven Gables 63 107 
Redburn 51 121 Melville 
Moby Dick 88 55 
The Last of the Mohicans 49 99 
The Spy 63 94 

American 
Novelists 

Cooper 

Water Witch 80 95 
Walden  49 74 Thoreau 
A Week on Concord 50 42 
Conduct Of Life 47 40 

American 
Essayists 

Emerson 
English Traits 52 65 
Pygmalion 44 58 
Misalliance 43 75 

Shaw 

Getting Married 51 133 
An Ideal Husband 51 36 

British 
Playwrights 

Wilde 
Woman of no Importance 38 20 
Agnes Grey 45 21 Anne 
Tenant Of Wildfell Hall 84 71 
The Professor 51 69 Charlotte 
Jane Eyre 84 14 

Bronte 
Sisters 

Emily Wuthering Heights 65 20 

Appendix B 
The Romanian corpus: 
 
Author Book Chunks 

(word count 
250) 

Soacra cu trei nurori 7 
Capra cu trei iezi 8 
Punguţa cu doi bani 3 
Dănilă Prepeleac 13 
Povestea porcului 14 

Ion Creanga 

Fata babei şi fata moşneagului 6 
Tinereţe fără bătrâneţe şi viaţă fără de moarte 11 
Ileana Simziana 24 
Aleodor Împărat 8 
Broasca ţestoasă cea fermecată 9 
Lupul cel năzdrăvan şi Făt-Frumos 10 

Petre Ispirescu 

Prâslea cel voinic şi merele de aur 15 
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Appendix C 
The following additional resources for this project are available on-line at 
http://www.cs.utexas.edu/~surdules/cs391l/final/:  
 
1. Complete source: code.zip. The Java files are in the src subdirectory. The 
precompiled binary (unmask.jar) has one dependency (JSAP_1.03a.jar). You can run 
the code using Java 1.4.2 or later (http://java.sun.com/j2se/1.4.2/): 
 
Usage: java edu.utexas.cs391l.surdules.Unmask 
                <Author> <Text> [--words-chunk <Words Chunk>] [--stop-words 
<Stop Words>] [--stemmer <Stemmer>] [--verbose <Verbose>] [--dump <Dump>] 
 
  <Author>                         The author against whose works we unmask.   
 
  <Text>                           The text that we unmask against the author. 
 
  [--words-chunk <Words Chunk>]    The number words per chunk in the text      
                                   files.                                      
 
  [--stop-words <Stop Words>]      The file containing the stop words.         
 
  [--stemmer <Stemmer>]            The stemmer to use for stemming ('English'  
                                   or 'Romanian').                             
 
  [--verbose <Verbose>]            Turn on logging.                            
 
  [--dump <Dump>]                  Dump vector files created during training   
                                   and testing.                                

 
2. The English corpus: gutenberg.zip. The texts for every author are available in 
eponymous subdirectories. 
 
3. The Romanian corpus: romania.zip. The texts for every author are available in 
eponymous subdirectories. 
 
4. This report in PDF format: report.pdf. 
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