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Abstract 
Current intrusion detection systems (IDS) do not easily 
adapt to detecting new attacks. Artificial neural networks 
(ANN) have been shown to successfully address this 
problem. In this paper, we show that a simple, feed-forward 
ANN performs surprisingly well when aggressively trained 
and tested on a realistic corpus of simulated attacks. We 
compared it to a similarly basic recurrent network (Elman) 
and we find that the feed-forward network detects attacks 
with fewer false positives and negatives. We explore a 
naive smoothing approach for improving ANN IDS 
detection rates. 

Introduction 
Security is becoming increasingly more important in our 
connected world. As the potential payoff for successful 
intrusions increases, so does the complexity and 
sophistication of attacks. Furthermore, the amount of 
network traffic noise makes it all that much easier to 
dissimulate the attack signal. We must fortify our current 
IDS solutions to keep up. 
 
Current intrusion systems focus on detecting known 
attacks; the literature denotes this approach as misuse 
detection. They are generally implemented as rule-based 
signature-matching or statistical analysis systems. Human 
creation and maintenance of rules is slow and costly.  The 
rules become obsolete and difficult to maintain over time, 
and they do not automatically adapt to discovering new 
attacks. The performance of such systems tends to suffer 
from high false negative counts (many attacks go 
unnoticed). 
 
Systems that detect anomalies (new attacks) are very 
promising. Such systems “learn” the difference between 
normal and anomalous behavior, and report it. Aside from a 
nominal setup, they tend to operate with minimum human 
intervention. They are generally built using some form of 
ANN architecture. Existing research suggests that they 
suffer from high false positive counts (many reported 
attacks are benign). 
 

We believe that a simple ANN architecture can be very 
effective at detecting anomalies. Previous research has 
focused on complex, recurrent architectures, but we feel 
that the strengths of a simple, feed-forward architecture 
have not been realistically explored. In this body of work, 
we have found that simple architectures do perform 
surprisingly well, specifically on the KDD Cup dataset 
[Hettich and Bay, 1999]. 

Background 
There are many dimensions to the problem of detecting 
intrusions in a computer network [Axelsson, 2000]. We 
have already alluded to the dichotomies between misuse 
(signature) vs. anomaly, and supervised vs. unsupervised 
learning. Other important dimensions are domain (host vs. 
network based), detection window (periodic log evaluation 
vs. real-time), and implementation (local vs. distributed). 
 
Attacks develop sequentially over time, so an ANN that 
learns attacks will benefit from having some form of 
memory [Ghosh et al., 1999]; memory is generally 
implemented by means of a recurrent architecture, such as 
Elman or Jordan [Elman, 1990]. To mitigate the false 
counts, a “leaky bucket” algorithm can be employed to 
smooth out erratic behavior [Ghosh et al., 1999]. 
 
Typical user activity can be assumed to cluster in 
neighborhoods, so a SOM can find the underlying natural 
organization of this data and detect anomalies [Hoglund et 
al., 2000]. Multiple SOMs can be grouped in a hierarchy 
where each level finds the salient features of the previous 
level [Lichodzijewski, 2002]. Unlike ANNs, SOMs can be 
used both quantitatively and qualitatively: the user can look 
at a physical map and provide another level of qualitative 
validation to the quantitative results from the SOM.  
 
The strengths of ANN and SOM can be combined in hybrid 
systems where the SOM clusters the data according to 
similarity and the ANN classifies the data according to type 
[Jirapummin et al., 2002]. This research is still very much 
in its infancy. 
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Approach 
We based our research largely on the groundwork in 
[Ghosh et al., 1999], which makes a compelling argument 
that the Elman recurrent network detects anomalies better 
than a simple feed-forward network. However, their 
methodology inherently frames intrusion detection as a 
regression problem by using ANNs to detect whether or not 
an attack follows the current event.   
 
We believe that the problem of detecting anomalies is best 
framed as a classification problem, namely to classify a 
given current event as either anomalous or normal.  
Consequently, we trained our ANNs differently.  In the line 
of [Ghosh et al., 1999], we compare the relative 
performance of a simple feed-forward network to a basic 
recurrent Elman network. 
 
There is a staggering amount of available data [MIT, 1998] 
for training an IDS. For practical and theoretical reasons, 
we believe that it is unfeasible to use all this data. From the 
start, we outlined a methodology for reducing the size of 
the data without compromising the quality of the results. 
 
[Ghosh et al., 1999] demonstrates the effectiveness of a 
“leaky bucket” smoothing algorithm. We believe this 
algorithm has equal merit in our classification approach and 
therefore we experimented with it. 
 
Because we approached the problem from a different angle 
than [Ghosh et al., 1999], we methodically searched the 
parameter space in a tiered fashion to find the optimal 
configuration parameters. 

Experiments 

Network Architecture 
To establish a comparison, we implemented a feed-forward 
and a recurrent Elman ANN.  Figure 1 illustrates the two 
architectures; note that the feed-forward ANN does not 
have the Elman “context layer” nodes. For each hidden 
node, a context node (Figure 2) stores its previous output 
from event to event.  The context nodes typically have a 
linear activation function. 
 
We used the JOONE [Marrone et al., 2004] ANN library.  
This library’s context node utilizes an atypical linear 
function combining the input and the previous output: 
 

out = beta * (input + (k * out)) 
 
where beta and k are constants. 
 
Because ANN-based detection systems are often prone to 
false positives, we additionally filtered the output of the 

network through the leaky bucket algorithm.  The output 
from the network is classified as normal vs. attack (see 
Appendix A), and if deemed attack, stored in the leaky 
bucket. If the leaky bucket level ever goes over a certain 
threshold, the network is said to have detected an anomaly. 
This classification heuristic is a departure from [Ghosh et 
al., 1999] where the ANN outputs (predicts) the next 
connection vector, and the discrepancy is then classified as 
attack. We made this choice because we felt that the ANN, 
especially the feed-forward kind, would shine as a classifier 
as opposed to a predictor. 
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Figure 1: Recurrent Elman ANN Architecture 
 

 
Figure 2: Context Node Detail 

Dataset 
We used the dataset from the KDD Cup competition 
[Hettich and Bay, 1999]. This dataset is also used by a 
number of research papers, so it is recognized in the 
research community as a standard corpus for this type of 
problem. This dataset originates from a very comprehensive 
joint DARPA-MIT experiment [MIT, 1998].  The original 
DARPA dataset is gigantic (9GB), while the KDD Cup 
dataset is smaller (1.2GB). Ideally, we would have liked to 
use the DARPA dataset, but we were forced to select the 
KDD Cup dataset due to time constraints. We ended up 
using a 10% subset of the full KDD Cup dataset (selected 
with even sampling by the KDD Cup committee). 
 
In order to run ANN experiments on this dataset, we had to 
pre-process it further. At a high-level, this dataset contains 
vectors that roughly correspond to connections. A 
connection is “a sequence of TCP packets starting and 
ending at some well defined times, between which data 
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flows from a source IP address to a target IP address under 
some well defined protocol” [Hettich and Bay, 1999]. Each 
vector represents a set of connection features and is labeled 
either as normal or attack (there are 39 different attack 
types).  
 
Because the KDD Cup data was designed for a competition, 
only the training data has labels, all the test data is 
unlabeled. In order for us to determine the accuracy of our 
experiments (i.e. obtain labeled data), we performed 5-fold 
cross-validation on this data from the start: we split the data 
into 5 subsets, and iteratively trained on four of the five 
subsets, each time using a different subset as a “hold out” 
test set. The relative proportions of the attack labels are in 
Table 1. 
 

Table 1: Relative Proportions of Attack Labels 

0.01%0.00%0.00%0.00%0.00%0.00%U2R

0.23%0.00%0.00%0.00%0.21%0.02%R2L

0.83%0.06%0.10%0.00%0.31%0.37%Probe

79.24%16.03%18.53%20.00%16.45%8.23%DoS

19.69%3.90%1.37%0.00%3.03%11.38%Normal

Grand Total54321Type

FoldSum of Count
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79.24%16.03%18.53%20.00%16.45%8.23%DoS

19.69%3.90%1.37%0.00%3.03%11.38%Normal

Grand Total54321Type

FoldSum of Count

 
 
We restricted our analysis to the 6 basic of the 41 total 
available features. By definition, a basic feature is “derived 
from packet headers without inspecting the content of the 
packet” [Kayacik et al., 2003]; in our case this also means 
that they are derived before the connection has actually 
completed. By this definition, there are 9 basic features: 
 
1. Duration of the connection [continuous] 
2. Protocol type (e.g. TCP, UDP or ICMP) [discrete] 
3. Service type (e.g. FTP, HTTP, Telnet) [discrete] 
4. Status flag (summarizes the connection) [discrete] 
5. Total bytes sent to destination host [continuous] 
6. Total bytes sent to source host [continuous] 
7. Are the destination and source addresses the same? 

[discrete] 
8. Number of wrong fragments [continuous] 
9. Number of urgent packets [continuous] 
 
The last 3 features are related to specific attack types, so we 
exclude those [Kayacik et al., 2003]. The remaining 32 
(extrapolated) features are content features (require domain 
knowledge, e.g. # of unsuccessful logins), time-based 
features (mature over a 2 second temporal window), and 
host-based features (mature over a 100 count connection 
window). 
 
We converted all the discrete features to a bit vector. Some 
discrete features (such as service and attack) had over 40 
distinct values, so we compressed them to a smaller set (of 
up to 7 distinct values) before converting to a bit vector. 
The attack type was converted by grouping all its individual 
values to their high-level type [Hettich and Bay, 1999]: 

 
• DoS (Denial of Service): attacker tries to prevent 

legitimate users from using a service by flooding the 
network 

• Probe: attacker tries to gather information on the target 
host by scanning its available services 

• R2L (Remote to Local): attacker does not have an 
account on the victim machine, hence tries to gain local 
access 

• U2R (User to Root): attacker has local access to the 
victim machine and tries to gain super-user privileges 

SECHAP Scaling 
When training our multi-layer perceptron (MLP), the 
standard practice of scaling continuous features to the [0, 1] 
range ensures faster training and reduction in the 
probability of encountering a local minimum.  This practice 
prevents the scale of the inputs from influencing 
convergence. 
 
A cursory analysis of our three continuous features reveals 
extremely long tails in their distributions.  Linear 
normalization (constant scaling) of the data to the [0, 1] 
range threatens to compress meaningful information to very 
small values.  Although a logarithmic normalization may 
sufficiently evade the problem of compressed data, we seek 
a method of data normalization that by nature ensures a 
balanced representation of the each feature’s distribution; 
consequently, we have implemented a novel approach to 
input data normalization employing the SECHAP 
(Streamed Equi-Cost Histogram APproximation) algorithm 
[Brönnimann and Vermorel, 2004]. 
 
Research in distribution approximation algorithms has 
largely responded to data streams in communications, 
networking, and database applications that exceed our 
current technology’s ability to maintain accurate 
representations of the streams.  Many applications in these 
fields seek a representation with bounded approximation 
error requiring concise storage and limited overhead 
processing. In particular, on-line (one-pass) models have 
offered extremely fast, small-space algorithms.  
 
On-line representations, in particular, benefit normalization 
of data for our IDS’ continuous features by allowing us to 
evaluate every single one of data points (over 490,000).  
This ensures that our representation does not cast away 
abnormal data solely based on their infrequency.  Although 
KDD has sufficiently loaded its dataset with attacks, we 
would like to address the possibility of training a network 
on data sparsely populated with attacks.  On-line algorithms 
promise exactly this in bounded time and space. 
 
Approximation algorithms span a variety of representation 
types based on histograms, wavelets, and other more 
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abstract data-sketching devices.  Of these representations, 
though, variable bucket-width histogram representations 
conveniently help solve our IDS data normalization 
problem.  The buckets determined to best characterize the 
dataset can be used to divide the semi-infinite range of 
values for each feature into discrete segments that can then 
be normalized independently and equally represented over 
the [0, 1] range. 
 
We have chosen the SECHAP algorithm over other variable 
bucket-width histogram approximation models [Gilbert et 
al., 2001; Guha et al. 2001] for its simplicity (ease of 
implementation), O(B) storage requirement, and O(log(B)) 
processing time, where B is the number of buckets used in 
the histogram; increasing B improves the histogram’s 
accuracy.  For our dataset, we have employed 200 buckets 
for the three histograms characterizing each feature.  Figure 
3 shows an example of the resulting normalization for one 
of our features, the number of bytes sent to the source host.   
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Figure 3: An Example of Continuous Data Normalizing 
 
The SECHAP model systematically splits and merges 
buckets to ensure an approximate “sketch” of the 
distribution.  Decisions to split and merge buckets seek to 
minimize the area of each bucket, which has shown to 
optimize the representation’s ability to store information 
about the distribution.   
 
This is precisely what we seek to accomplish in our 
normalization, an optimal representation of the distribution 
within the [0, 1] range.  In Figure 3, we find that outlying 
data is well represented, but not at the expense of 
compressing more normal values.   

Time Representation 
Because attacks develop over time we would like to 
account for the chronology of event when training our 
ANN.  We can represent time either explicitly (e.g. with a 
time stamp) or implicitly by presenting training examples to 
the network in their chronological order. 

 
Existing research [Lichodzijewski, 2002], strongly suggests 
that implicit representation improves network performance 
over explicit representation, primarily due to high variance 
in the time dimension.  Additionally, recurrent networks, 
such as the ones we used by nature capitalize particularly 
well on implicitly represented time-series data.  Lastly, the 
KDD Cup dataset has been pre-sorted in chronological 
order. 

Design of Experiments and Results 
Experimentation with MLPs involves initially exploring 
and fixing certain rote parameters, such as: 
 
• Number of Hidden Layers 
• Number of Hidden Nodes 
• Architecture (feed-forward vs. recurrent) 
• Learning rate 
• Momentum 
 
Once we fixed these high-level parameters, we fine-tuned 
the remaining lower-level parameters: 
 
• Leaky bucket rate 
• Leaky bucket threshold 

First Experiment 
We ran an initial experiment to determine reasonable values 
for these parameters, based on a statistical significance test. 
We decided a-priori to use only a single hidden layer; many 
problem spaces are sufficiently addressed by a single 
hidden layer, as confirmed by current research papers. 
 

Table 2: First Experiment Parameter Space 
Parameter Values 
Topology feed-forward, recurrent 
Hidden Nodes 10, 20, 30 
Learning Rate 0.1, 0.3, 0.5, 0.7 
Momentum 0.3, 0.5, 0.7 
Leak Rate 0.7 
Leak Threshold 0.0 

 
Because we suspect that the leak rate and threshold do not 
influence the relative accuracy when we vary the other 
parameters, we decided to fix the leak rate and the threshold 
to 0.7 and, respectively, 0.0, as seen in Table 2. 
 
The experiment showed no statistically significant 
differences in detection rates across these parameters. 
Consequently, we chose to fix these parameters as follows, 
in order to explore in more detail other factors: 
 

• Hidden Nodes = 20 
• Learning Rate = 0.3 
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• Momentum = 0.7 
 
The detailed results from this experiment are shown in 
Appendix B. 

Second Experiment 
In this second experiment we used the fixed values from the 
first experiment, and we focused on finding the leak rate 
and threshold that provide the best detection rate. We also 
looked for detection rate differences between the feed-
forward and recurrent architectures. 
 

Table 3: Second Experiment Parameter Space 
Parameter Values 
Topology feed-forward, recurrent 
Hidden Nodes 20 
Learning Rate 0.3 
Momentum 0.7 
Leak Rate 0.5, 0.75, 1.0 
Leak Threshold 1.0, 1.5, 2.0 

 
Averaging across all splits, both feed-forward and recurrent 
networks comparably detect normal activity (> 95%, Figure 
4). However, the feed-forward network has significantly 
better attack detection rate compared to the recurrent 
network (75% vs., respectively, 8%, Figure 5). Note that the 
figures throughout this paper employ a code of “F” for feed 
forward networks and a code of “CH” for Elman 
implementations.  As you can see in these figures, the 
standard deviation is relatively high, especially for the 
recurrent network architecture. This phenomenon can be 
explained two ways: 

 
1. The leak rate and bucket threshold vary across splits, 

which as we will show, does affect performance. 
2. Even if we fix the leak rate and bucket threshold, there 

is still inherent variance from run to run, all else being 
equal; this is especially prominent in the recurrent 
network. 

 
 
 

 
Figure 4: Normal Detection Rate 

 

 
Figure 5: Attack Detection Rate 

 
Our research concludes that the recurrent network 
performance is unstable and diverges as we train more 
(Figure 6). We believe this directly explains the poor 
performance of the recurrent network. Due to the high 
amount of training data, we were only able to run for 60 
epochs; it is possible that if we were to run for more 
epochs, the recurrent network accuracy would converge, 
however we believe that there is significant redundancy in 
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the amount of data we used, and therefore the number of 
training epochs was appropriate. Given the feed-forward 
network’s stellar performance, we felt that there is marginal 
value-add in continuing to pursue optimization of the 
recurrent topology. 
 

 
Figure 6: Root Mean Square Error across Epochs (blues 

are Feed-forward, reds are Recurrent) 
 
Despite the failure of the recurrent network to train, we can 
still evaluate the effectiveness of the leaky bucket algorithm 
across both topologies. 
 
In Figure 7, warm (red) colors indicate high accuracy, and 
cold (blue) colors indicate low accuracy. Note that the (1.0, 
1.0) point on all these graphs effectively turns off the leaky 
bucket (the bucket has no “memory” across consecutive 
attacks). The recurrent network has a performance “sweet-
spot” at (0.75, 1.5), for both normal and attack. The feed-
forward network is not affected by the leaky bucket at all 
for the normal case, and for the attack case it must have a 
relatively low leak rate to prevent false negatives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feed-forward Recurrent 

 
Normal Normal 

 
Attack Attack 

  
Figure 7: Performance Contour Maps 

Discussion, Future Work 
Our experimentation strongly asserts that Elman recurrent 
networks do not work well for the problem of classifying 
intrusion events, despite their theoretical ability to harness 
time-series information. In contrast to results in [Ghosh et 
al., 1999], the simple, feed-forward network achieves very 
good classification accuracy, both for normal and attack 
events (Figure 7), on par with the recurrent network from 
[Ghosh et al., 1999]. A corollary of this is that the leaky 
bucket algorithm works very well. 
 
We suspect any of a number of reasons for the poor 
performance of our recurrent Elman network experiments: 
 
1. JOONE’s atypical context node implementation may 

have hindered convergence. 
2. Due to the high volume of training data and time 

limitations, we were only able to train our networks for 
60 epochs. It is possible that additional training may 
have helped the Elman recurrent network to converge. 

3. The KDD Cup data may lack the chronology we 
assumed it to have. Specifically, a row in the KDD Cup 
data may represent a single connection (beginning to 
end), or may represent a fragment of a single 
connection. In the former interpretation, there is no 
chronology to this data, which means that training a 
recurrent network on it would likely overfit and 
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produce meaningless results. This might also be the 
reason why the feed-forward architecture performs so 
well.  

 
For future work, we would like to migrate to a more stable, 
less buggy platform than JOONE and repeat some of the 
experiments. Additional experimentation would provide 
statistical significance to the results of this research. 
 
In our training, we stopped iterating through additional 
epochs when the error delta between two consecutive 
epochs dropped below a certain threshold. This is a naive 
approach, and could stand to be improved by computing the 
error on the test set (instead of on the train set) and using it 
as a stopping criterion. This would likely prevent premature 
termination or overfitting. 

Conclusion 
Feed-forward networks coupled with a leaky bucket 
algorithm perform very well at classifying both normal and 
attack activity in the context of intrusion detection. These 
networks converge to a compellingly practical accuracy, 
and the additional work to setup, train, and use a recurrent 
network may not be justified. 

Appendix A 
This is the pseudo-code for the classification algorithm. 
 
Description: classify the output from the ANN into one of 
the known attack meta-types (see the Dataset section), and 
update the statistics (true positive = T+, false positive = F+, 
false negative = F-, true negative = T-) based on the known 
output label 
 
Input: output pattern, known pattern 
 
Output: {T+, F+, F-, T-} counts 
 
Pseudo-code: 
1. Find the closest (L2 norm) pattern to output 
2. If closest is not normal, add 1 to the bucket 
3. If bucket level >= threshold, and closest is not normal, 

set attack flag 
4. Decrement bucket by leaking rate 
5. If attack flag 

a. If known is normal, increment F+ 
b. Else increment T+ 

6. Else 
a. If known is normal, increment T- 
b. Else increment F- 

Appendix B 
These graphs show how we fixed the hidden nodes (20), 
learning rate (0.3), and momentum (0.7). There is no 
statistical significance (as measured by a paired t-test across 
the 5-fold run) between the accuracy of various topologies 
across these parameters. The statistical tool employed for 
graph generation groups statistically insignificant pairs by 
color around a bolded group, but only one at a time.  
Therefore, the graphs below feature this colored grouping 
for the feed-forward splits.   
 
The normal accuracy is the percentage of normal events 
that were actually classified as normal (as opposed to 
attack); similarly the attack accuracy is the percentage of 
attack events that were actually classified as attack. 
 
Note that the feed-forward attack detection rate in these 
graphs is artificially low because of a bug in our code. This 
bug did not affect the relative performance of these 
experiments. 
 

 
Figure 8: Normal Detection by Topology / Hidden Nodes 
 

 
Figure 9: Attack Detection by Topology / Hidden Nodes 
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Figure 10: Normal Detection by Topology / Learn Rate 

 

 
Figure 11: Attack Detection by Topology / Learn Rate 

 

 
Figure 12: Normal Detection by Topology / Momentum 

 

 
Figure 13: Attack Detection by Topology / Momentum 
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