
 - 1 -

Simple Solutions to Network-Based Intrusion Detection

Razvan Surdulescu, Sukant Hajra

Department of Computer Sciences
The University of Texas at Austin

Austin, TX, 78705
{surdules, tnks}@cs.utexas.edu

Abstract
Current intrusion detection systems (IDS) do not easily
adapt to detecting new attacks. Artificial neural networks
(ANN) have been shown to successfully address this
problem. In this paper, we show that a simple, feed-forward
ANN performs surprisingly well when aggressively trained
and tested on a realistic corpus of simulated attacks. We
compared it to a similarly basic recurrent network (Elman)
and we find that the feed-forward network detects attacks
with fewer false positives and negatives. We explore a
naive smoothing approach for improving ANN IDS
detection rates.

Introduction
Security is becoming increasingly more important in our
connected world. As the potential payoff for successful
intrusions increases, so does the complexity and
sophistication of attacks. Furthermore, the amount of
network traffic noise makes it all that much easier to
dissimulate the attack signal. We must fortify our current
IDS solutions to keep up.

Current intrusion systems focus on detecting known
attacks; the literature denotes this approach as misuse
detection. They are generally implemented as rule-based
signature-matching or statistical analysis systems. Human
creation and maintenance of rules is slow and costly. The
rules become obsolete and difficult to maintain over time,
and they do not automatically adapt to discovering new
attacks. The performance of such systems tends to suffer
from high false negative counts (many attacks go
unnoticed).

Systems that detect anomalies (new attacks) are very
promising. Such systems “learn” the difference between
normal and anomalous behavior, and report it. Aside from a
nominal setup, they tend to operate with minimum human
intervention. They are generally built using some form of
ANN architecture. Existing research suggests that they
suffer from high false positive counts (many reported
attacks are benign).

We believe that a simple ANN architecture can be very
effective at detecting anomalies. Previous research has
focused on complex, recurrent architectures, but we feel
that the strengths of a simple, feed-forward architecture
have not been realistically explored. In this body of work,
we have found that simple architectures do perform
surprisingly well, specifically on the KDD Cup dataset
[Hettich and Bay, 1999].

Background
There are many dimensions to the problem of detecting
intrusions in a computer network [Axelsson, 2000]. We
have already alluded to the dichotomies between misuse
(signature) vs. anomaly, and supervised vs. unsupervised
learning. Other important dimensions are domain (host vs.
network based), detection window (periodic log evaluation
vs. real-time), and implementation (local vs. distributed).

Attacks develop sequentially over time, so an ANN that
learns attacks will benefit from having some form of
memory [Ghosh et al., 1999]; memory is generally
implemented by means of a recurrent architecture, such as
Elman or Jordan [Elman, 1990]. To mitigate the false
counts, a “leaky bucket” algorithm can be employed to
smooth out erratic behavior [Ghosh et al., 1999].

Typical user activity can be assumed to cluster in
neighborhoods, so a SOM can find the underlying natural
organization of this data and detect anomalies [Hoglund et
al., 2000]. Multiple SOMs can be grouped in a hierarchy
where each level finds the salient features of the previous
level [Lichodzijewski, 2002]. Unlike ANNs, SOMs can be
used both quantitatively and qualitatively: the user can look
at a physical map and provide another level of qualitative
validation to the quantitative results from the SOM.

The strengths of ANN and SOM can be combined in hybrid
systems where the SOM clusters the data according to
similarity and the ANN classifies the data according to type
[Jirapummin et al., 2002]. This research is still very much
in its infancy.

 - 2 -

Approach
We based our research largely on the groundwork in
[Ghosh et al., 1999], which makes a compelling argument
that the Elman recurrent network detects anomalies better
than a simple feed-forward network. However, their
methodology inherently frames intrusion detection as a
regression problem by using ANNs to detect whether or not
an attack follows the current event.

We believe that the problem of detecting anomalies is best
framed as a classification problem, namely to classify a
given current event as either anomalous or normal.
Consequently, we trained our ANNs differently. In the line
of [Ghosh et al., 1999], we compare the relative
performance of a simple feed-forward network to a basic
recurrent Elman network.

There is a staggering amount of available data [MIT, 1998]
for training an IDS. For practical and theoretical reasons,
we believe that it is unfeasible to use all this data. From the
start, we outlined a methodology for reducing the size of
the data without compromising the quality of the results.

[Ghosh et al., 1999] demonstrates the effectiveness of a
“leaky bucket” smoothing algorithm. We believe this
algorithm has equal merit in our classification approach and
therefore we experimented with it.

Because we approached the problem from a different angle
than [Ghosh et al., 1999], we methodically searched the
parameter space in a tiered fashion to find the optimal
configuration parameters.

Experiments

Network Architecture
To establish a comparison, we implemented a feed-forward
and a recurrent Elman ANN. Figure 1 illustrates the two
architectures; note that the feed-forward ANN does not
have the Elman “context layer” nodes. For each hidden
node, a context node (Figure 2) stores its previous output
from event to event. The context nodes typically have a
linear activation function.

We used the JOONE [Marrone et al., 2004] ANN library.
This library’s context node utilizes an atypical linear
function combining the input and the previous output:

out = beta * (input + (k * out))

where beta and k are constants.

Because ANN-based detection systems are often prone to
false positives, we additionally filtered the output of the

network through the leaky bucket algorithm. The output
from the network is classified as normal vs. attack (see
Appendix A), and if deemed attack, stored in the leaky
bucket. If the leaky bucket level ever goes over a certain
threshold, the network is said to have detected an anomaly.
This classification heuristic is a departure from [Ghosh et
al., 1999] where the ANN outputs (predicts) the next
connection vector, and the discrepancy is then classified as
attack. We made this choice because we felt that the ANN,
especially the feed-forward kind, would shine as a classifier
as opposed to a predictor.

Input
Layer

Hidden
Layer

Output
Layer

Leaky
Bucket

Context
Layer

Context
Layer

Figure 1: Recurrent Elman ANN Architecture

Figure 2: Context Node Detail

Dataset
We used the dataset from the KDD Cup competition
[Hettich and Bay, 1999]. This dataset is also used by a
number of research papers, so it is recognized in the
research community as a standard corpus for this type of
problem. This dataset originates from a very comprehensive
joint DARPA-MIT experiment [MIT, 1998]. The original
DARPA dataset is gigantic (9GB), while the KDD Cup
dataset is smaller (1.2GB). Ideally, we would have liked to
use the DARPA dataset, but we were forced to select the
KDD Cup dataset due to time constraints. We ended up
using a 10% subset of the full KDD Cup dataset (selected
with even sampling by the KDD Cup committee).

In order to run ANN experiments on this dataset, we had to
pre-process it further. At a high-level, this dataset contains
vectors that roughly correspond to connections. A
connection is “a sequence of TCP packets starting and
ending at some well defined times, between which data

 - 3 -

flows from a source IP address to a target IP address under
some well defined protocol” [Hettich and Bay, 1999]. Each
vector represents a set of connection features and is labeled
either as normal or attack (there are 39 different attack
types).

Because the KDD Cup data was designed for a competition,
only the training data has labels, all the test data is
unlabeled. In order for us to determine the accuracy of our
experiments (i.e. obtain labeled data), we performed 5-fold
cross-validation on this data from the start: we split the data
into 5 subsets, and iteratively trained on four of the five
subsets, each time using a different subset as a “hold out”
test set. The relative proportions of the attack labels are in
Table 1.

Table 1: Relative Proportions of Attack Labels

0.01%0.00%0.00%0.00%0.00%0.00%U2R

0.23%0.00%0.00%0.00%0.21%0.02%R2L

0.83%0.06%0.10%0.00%0.31%0.37%Probe

79.24%16.03%18.53%20.00%16.45%8.23%DoS

19.69%3.90%1.37%0.00%3.03%11.38%Normal

Grand Total54321Type

FoldSum of Count

0.01%0.00%0.00%0.00%0.00%0.00%U2R

0.23%0.00%0.00%0.00%0.21%0.02%R2L

0.83%0.06%0.10%0.00%0.31%0.37%Probe

79.24%16.03%18.53%20.00%16.45%8.23%DoS

19.69%3.90%1.37%0.00%3.03%11.38%Normal

Grand Total54321Type

FoldSum of Count

We restricted our analysis to the 6 basic of the 41 total
available features. By definition, a basic feature is “derived
from packet headers without inspecting the content of the
packet” [Kayacik et al., 2003]; in our case this also means
that they are derived before the connection has actually
completed. By this definition, there are 9 basic features:

1. Duration of the connection [continuous]
2. Protocol type (e.g. TCP, UDP or ICMP) [discrete]
3. Service type (e.g. FTP, HTTP, Telnet) [discrete]
4. Status flag (summarizes the connection) [discrete]
5. Total bytes sent to destination host [continuous]
6. Total bytes sent to source host [continuous]
7. Are the destination and source addresses the same?

[discrete]
8. Number of wrong fragments [continuous]
9. Number of urgent packets [continuous]

The last 3 features are related to specific attack types, so we
exclude those [Kayacik et al., 2003]. The remaining 32
(extrapolated) features are content features (require domain
knowledge, e.g. # of unsuccessful logins), time-based
features (mature over a 2 second temporal window), and
host-based features (mature over a 100 count connection
window).

We converted all the discrete features to a bit vector. Some
discrete features (such as service and attack) had over 40
distinct values, so we compressed them to a smaller set (of
up to 7 distinct values) before converting to a bit vector.
The attack type was converted by grouping all its individual
values to their high-level type [Hettich and Bay, 1999]:

• DoS (Denial of Service): attacker tries to prevent

legitimate users from using a service by flooding the
network

• Probe: attacker tries to gather information on the target
host by scanning its available services

• R2L (Remote to Local): attacker does not have an
account on the victim machine, hence tries to gain local
access

• U2R (User to Root): attacker has local access to the
victim machine and tries to gain super-user privileges

SECHAP Scaling
When training our multi-layer perceptron (MLP), the
standard practice of scaling continuous features to the [0, 1]
range ensures faster training and reduction in the
probability of encountering a local minimum. This practice
prevents the scale of the inputs from influencing
convergence.

A cursory analysis of our three continuous features reveals
extremely long tails in their distributions. Linear
normalization (constant scaling) of the data to the [0, 1]
range threatens to compress meaningful information to very
small values. Although a logarithmic normalization may
sufficiently evade the problem of compressed data, we seek
a method of data normalization that by nature ensures a
balanced representation of the each feature’s distribution;
consequently, we have implemented a novel approach to
input data normalization employing the SECHAP
(Streamed Equi-Cost Histogram APproximation) algorithm
[Brönnimann and Vermorel, 2004].

Research in distribution approximation algorithms has
largely responded to data streams in communications,
networking, and database applications that exceed our
current technology’s ability to maintain accurate
representations of the streams. Many applications in these
fields seek a representation with bounded approximation
error requiring concise storage and limited overhead
processing. In particular, on-line (one-pass) models have
offered extremely fast, small-space algorithms.

On-line representations, in particular, benefit normalization
of data for our IDS’ continuous features by allowing us to
evaluate every single one of data points (over 490,000).
This ensures that our representation does not cast away
abnormal data solely based on their infrequency. Although
KDD has sufficiently loaded its dataset with attacks, we
would like to address the possibility of training a network
on data sparsely populated with attacks. On-line algorithms
promise exactly this in bounded time and space.

Approximation algorithms span a variety of representation
types based on histograms, wavelets, and other more

 - 4 -

abstract data-sketching devices. Of these representations,
though, variable bucket-width histogram representations
conveniently help solve our IDS data normalization
problem. The buckets determined to best characterize the
dataset can be used to divide the semi-infinite range of
values for each feature into discrete segments that can then
be normalized independently and equally represented over
the [0, 1] range.

We have chosen the SECHAP algorithm over other variable
bucket-width histogram approximation models [Gilbert et
al., 2001; Guha et al. 2001] for its simplicity (ease of
implementation), O(B) storage requirement, and O(log(B))
processing time, where B is the number of buckets used in
the histogram; increasing B improves the histogram’s
accuracy. For our dataset, we have employed 200 buckets
for the three histograms characterizing each feature. Figure
3 shows an example of the resulting normalization for one
of our features, the number of bytes sent to the source host.

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 0.2 0.4 0.6 0.8 1 1.2

O
rig

in
al

 V
al

ue

Normalized Value

Source Bytes Normalization

Full Data
Full Data (10% sample)

Unlabeled Test Data
Unlabeled Test Data (10% sample)

"New" Unlabeled Test Data
"Corrected" Test Data

Figure 3: An Example of Continuous Data Normalizing

The SECHAP model systematically splits and merges
buckets to ensure an approximate “sketch” of the
distribution. Decisions to split and merge buckets seek to
minimize the area of each bucket, which has shown to
optimize the representation’s ability to store information
about the distribution.

This is precisely what we seek to accomplish in our
normalization, an optimal representation of the distribution
within the [0, 1] range. In Figure 3, we find that outlying
data is well represented, but not at the expense of
compressing more normal values.

Time Representation
Because attacks develop over time we would like to
account for the chronology of event when training our
ANN. We can represent time either explicitly (e.g. with a
time stamp) or implicitly by presenting training examples to
the network in their chronological order.

Existing research [Lichodzijewski, 2002], strongly suggests
that implicit representation improves network performance
over explicit representation, primarily due to high variance
in the time dimension. Additionally, recurrent networks,
such as the ones we used by nature capitalize particularly
well on implicitly represented time-series data. Lastly, the
KDD Cup dataset has been pre-sorted in chronological
order.

Design of Experiments and Results
Experimentation with MLPs involves initially exploring
and fixing certain rote parameters, such as:

• Number of Hidden Layers
• Number of Hidden Nodes
• Architecture (feed-forward vs. recurrent)
• Learning rate
• Momentum

Once we fixed these high-level parameters, we fine-tuned
the remaining lower-level parameters:

• Leaky bucket rate
• Leaky bucket threshold

First Experiment
We ran an initial experiment to determine reasonable values
for these parameters, based on a statistical significance test.
We decided a-priori to use only a single hidden layer; many
problem spaces are sufficiently addressed by a single
hidden layer, as confirmed by current research papers.

Table 2: First Experiment Parameter Space
Parameter Values
Topology feed-forward, recurrent
Hidden Nodes 10, 20, 30
Learning Rate 0.1, 0.3, 0.5, 0.7
Momentum 0.3, 0.5, 0.7
Leak Rate 0.7
Leak Threshold 0.0

Because we suspect that the leak rate and threshold do not
influence the relative accuracy when we vary the other
parameters, we decided to fix the leak rate and the threshold
to 0.7 and, respectively, 0.0, as seen in Table 2.

The experiment showed no statistically significant
differences in detection rates across these parameters.
Consequently, we chose to fix these parameters as follows,
in order to explore in more detail other factors:

• Hidden Nodes = 20
• Learning Rate = 0.3

 - 5 -

• Momentum = 0.7

The detailed results from this experiment are shown in
Appendix B.

Second Experiment
In this second experiment we used the fixed values from the
first experiment, and we focused on finding the leak rate
and threshold that provide the best detection rate. We also
looked for detection rate differences between the feed-
forward and recurrent architectures.

Table 3: Second Experiment Parameter Space
Parameter Values
Topology feed-forward, recurrent
Hidden Nodes 20
Learning Rate 0.3
Momentum 0.7
Leak Rate 0.5, 0.75, 1.0
Leak Threshold 1.0, 1.5, 2.0

Averaging across all splits, both feed-forward and recurrent
networks comparably detect normal activity (> 95%, Figure
4). However, the feed-forward network has significantly
better attack detection rate compared to the recurrent
network (75% vs., respectively, 8%, Figure 5). Note that the
figures throughout this paper employ a code of “F” for feed
forward networks and a code of “CH” for Elman
implementations. As you can see in these figures, the
standard deviation is relatively high, especially for the
recurrent network architecture. This phenomenon can be
explained two ways:

1. The leak rate and bucket threshold vary across splits,

which as we will show, does affect performance.
2. Even if we fix the leak rate and bucket threshold, there

is still inherent variance from run to run, all else being
equal; this is especially prominent in the recurrent
network.

Figure 4: Normal Detection Rate

Figure 5: Attack Detection Rate

Our research concludes that the recurrent network
performance is unstable and diverges as we train more
(Figure 6). We believe this directly explains the poor
performance of the recurrent network. Due to the high
amount of training data, we were only able to run for 60
epochs; it is possible that if we were to run for more
epochs, the recurrent network accuracy would converge,
however we believe that there is significant redundancy in

 - 6 -

the amount of data we used, and therefore the number of
training epochs was appropriate. Given the feed-forward
network’s stellar performance, we felt that there is marginal
value-add in continuing to pursue optimization of the
recurrent topology.

Figure 6: Root Mean Square Error across Epochs (blues

are Feed-forward, reds are Recurrent)

Despite the failure of the recurrent network to train, we can
still evaluate the effectiveness of the leaky bucket algorithm
across both topologies.

In Figure 7, warm (red) colors indicate high accuracy, and
cold (blue) colors indicate low accuracy. Note that the (1.0,
1.0) point on all these graphs effectively turns off the leaky
bucket (the bucket has no “memory” across consecutive
attacks). The recurrent network has a performance “sweet-
spot” at (0.75, 1.5), for both normal and attack. The feed-
forward network is not affected by the leaky bucket at all
for the normal case, and for the attack case it must have a
relatively low leak rate to prevent false negatives.

Feed-forward Recurrent

Normal Normal

Attack Attack

Figure 7: Performance Contour Maps

Discussion, Future Work
Our experimentation strongly asserts that Elman recurrent
networks do not work well for the problem of classifying
intrusion events, despite their theoretical ability to harness
time-series information. In contrast to results in [Ghosh et
al., 1999], the simple, feed-forward network achieves very
good classification accuracy, both for normal and attack
events (Figure 7), on par with the recurrent network from
[Ghosh et al., 1999]. A corollary of this is that the leaky
bucket algorithm works very well.

We suspect any of a number of reasons for the poor
performance of our recurrent Elman network experiments:

1. JOONE’s atypical context node implementation may

have hindered convergence.
2. Due to the high volume of training data and time

limitations, we were only able to train our networks for
60 epochs. It is possible that additional training may
have helped the Elman recurrent network to converge.

3. The KDD Cup data may lack the chronology we
assumed it to have. Specifically, a row in the KDD Cup
data may represent a single connection (beginning to
end), or may represent a fragment of a single
connection. In the former interpretation, there is no
chronology to this data, which means that training a
recurrent network on it would likely overfit and

 - 7 -

produce meaningless results. This might also be the
reason why the feed-forward architecture performs so
well.

For future work, we would like to migrate to a more stable,
less buggy platform than JOONE and repeat some of the
experiments. Additional experimentation would provide
statistical significance to the results of this research.

In our training, we stopped iterating through additional
epochs when the error delta between two consecutive
epochs dropped below a certain threshold. This is a naive
approach, and could stand to be improved by computing the
error on the test set (instead of on the train set) and using it
as a stopping criterion. This would likely prevent premature
termination or overfitting.

Conclusion
Feed-forward networks coupled with a leaky bucket
algorithm perform very well at classifying both normal and
attack activity in the context of intrusion detection. These
networks converge to a compellingly practical accuracy,
and the additional work to setup, train, and use a recurrent
network may not be justified.

Appendix A
This is the pseudo-code for the classification algorithm.

Description: classify the output from the ANN into one of
the known attack meta-types (see the Dataset section), and
update the statistics (true positive = T+, false positive = F+,
false negative = F-, true negative = T-) based on the known
output label

Input: output pattern, known pattern

Output: {T+, F+, F-, T-} counts

Pseudo-code:
1. Find the closest (L2 norm) pattern to output
2. If closest is not normal, add 1 to the bucket
3. If bucket level >= threshold, and closest is not normal,

set attack flag
4. Decrement bucket by leaking rate
5. If attack flag

a. If known is normal, increment F+
b. Else increment T+

6. Else
a. If known is normal, increment T-
b. Else increment F-

Appendix B
These graphs show how we fixed the hidden nodes (20),
learning rate (0.3), and momentum (0.7). There is no
statistical significance (as measured by a paired t-test across
the 5-fold run) between the accuracy of various topologies
across these parameters. The statistical tool employed for
graph generation groups statistically insignificant pairs by
color around a bolded group, but only one at a time.
Therefore, the graphs below feature this colored grouping
for the feed-forward splits.

The normal accuracy is the percentage of normal events
that were actually classified as normal (as opposed to
attack); similarly the attack accuracy is the percentage of
attack events that were actually classified as attack.

Note that the feed-forward attack detection rate in these
graphs is artificially low because of a bug in our code. This
bug did not affect the relative performance of these
experiments.

Figure 8: Normal Detection by Topology / Hidden Nodes

Figure 9: Attack Detection by Topology / Hidden Nodes

 - 8 -

Figure 10: Normal Detection by Topology / Learn Rate

Figure 11: Attack Detection by Topology / Learn Rate

Figure 12: Normal Detection by Topology / Momentum

Figure 13: Attack Detection by Topology / Momentum

References
[Axelsson, 2000] Axelsson S., “Intrusion Detection
Systems: A Survey and Taxonomy”, Technical Report,
Dept. of Computer Engineering, Chalmers University,
March 2000

[Brönnimann and Vermorel, 2004] Brönnimann H.,
Vermorel J., “Streaming, Self-Scaling Histograms with
Stability and Optimality Guarantees”, New York 2004, to
appear

[Elman, 1990] Elman J. L., “Finding Structure in Time”,
Cognitive Science, 1990

[Ghosh et al., 1999] Ghosh A. K., Schwartzbard A., Schatz
M., “Learning Program Behavior Profiles for Intrusion
Detection”, Proceedings 1st USENIX Workshop on
Intrusion Detection and Network Monitoring, 04, 1999

[Hettich and Bay, 1999] Hettich S., Bay S. D., “The UCI
KDD Archive”, Irvine, CA: University of California,
Department of Information and Computer Science., 1999,
http://kdd.ics.uci.edu

[Hoglund et al., 2000] Hoglund A. J., Hatonen K., Sorvari
A. S. , “A Computer Host-Based User Anomaly Detection
System Using The Self-Organizing Map”, Proceedings of
the International Conference on Neural Networks, IEEE
IJCNN 2000, Vol. 5, pp. 411-416

[Jirapummin et al., 2002] Jirapummin C.,
Wattanapongsakorn N., Kanthamanon P., “Hybrid Neural
Networks for Intrusion Detection System”, 2002
International Technical Conference On Circuits/Systems,
Computers and Communications

[Kayacik et al., 2003] Kayacik G., Zincir-Heywood N.,
Heywood M., “On the Capability of an SOM-based

 - 9 -

Intrusion Detection System”, Proceedings of International
Joint Conference on Neural Networks, 2003

[Lichodzijewski, 2002] Lichodzijewski P., “Host Based
Intrusion Detection Using Self-Organizing Maps, IEEE
International Joint Conference on Neural Networks, May
2002

[Marrone et al., 2004] Marrone P., Joone Team, “Joone -
Java Object Oriented Neural Engine”, 2004,
http://www.jooneworld.com/

[MIT, 1998] MIT Lincoln Laboratory Information Systems
Technology Group, “The 1998 Intrusion Detection Off-line
Evaluation Plan”, March 1998,
http://www.ll.mit.edu/IST/ideval/docs/1998/id98-eval-ll.txt

