
CS��� Final Project

Conditional Branch Elimination

Preliminary Version

Eric Feigin �feigin�fas�harvard�edu�
Razvan Surdulescu �surdules�fas�harvard�edu�

April ��� ����

Abstract

This paper describes a method for avoiding conditional branches by
replicating code along known execution paths in a program� The �rst part
describes the algorithms used to determine what branches are avoidable
and under what circumstances� the second part describes a restructuring
algorithm that replicates parts of the graph� taking advantage of the in�
formation gathered in the �rst part� Statistics indicate reductions in total
as well as conditional branch instruction count�

There is little original work in this paper� most of it is based on �MuW����

� Introduction

��� What are avoidable branches�

Avoidable branches are conditional branches for which there exists some execu�
tion path through the program along which the result of the branch is known�

A simple example serves to illustrate the purpose of our project� Consider
the simple control��ow graph presented in �gure ��

There is a conditional branch in node �� branching on the condition a�� �i�e�
if a�� is true� then the branch will take and jump to node �� otherwise it will
fall�through to node ��	 Node � contains a procedure call� Node � contains the
instruction a��� which is the only instruction in node � which a
ects a� Nodes
� and � contain no instructions that a
ect a�

On entrance to node � we knew that a�� was false� because to get to node ��
the branch in node � must have fallen�through� However� node � contains a pro�
cedure call� which may have some unknown e
ect on the value of a� Therefore�
we know nothing at the exit of node � about whether a�� is true or false�

On entrance to node �� we know that the condition a�� is true� because to
get to node �� the branch in node � must have taken� The only instruction in

�

Feigin� Surdulescu� Conditional Branch Elimination �

a>5? 1

2 3

4

5

call proc; a++;

Figure � Original CFG

node � that a
ects a is a��� The instruction a�� has the e
ect of increasing
a �assuming no over�ow�an issue that we will address later�	 Thus� after the
instruction a�� executes� the condition a�� will remain true� at the exit of node
� we know that the condition a�� is true� because it was true on entrance to
node �� and no instruction in node � changed this fact� Therefore� at the exit
to node � we still know that the conditional branch in node � will take�

Nodes � and � do not a
ect a� So� when node � jumps back to node ��
we know that the branch in node � will take if we reached node � along the
execution path �� �� �� �� �� Thus the branch in node � is an avoidable

branch�

��� How can avoidable branches be eliminated�

With the control �ow graph shown above� we can�t take advantage of the infor�
mation we have� because� when we reach node �� we don�t know what execution
path we took to get there�

However� by using code duplication� we can restructure the control �ow
graph to avoid this branch along the execution path where its result is known�

We �rst need to split node � into two identical copies�one �node �a	 whose
predecessor is node �� the other �node �b	 whose predecessor is node �� Likewise�
we duplicate node � into a node �a whose predecessor is node �a and a node �b
whose predecessor is �b�

We have now separated the two divergent execution paths� At the exit of
node �a� we know nothing about the branch in node �� whereas at the exit
of node �b we know the branch in node � will still take� This is the point of
duplicating nodes we can have node �a jump back to our original node �� which
contains the branch� since we still have to check the branch condition in this
case �our execution path made the condition unknown�	 However� node �b can
jump to a new copy of node � �called node �b	 that does not contain a branch

since we know that we reached node �b along an execution path where we know
the branch to be taken and� therefore� we can simply eliminate the branch and

Feigin� Surdulescu� Conditional Branch Elimination �

replace it with a jump to the branch�s take target �in this case� node ��	
The restructured control��ow graph looks like this ��gure �	

1b1

2 3

4a 4b

5a 5b

Figure � Restructured CFG

We have now eliminated the branch in node � along a particular execution
path� There are clear drawbacks with increased code size �which we will dis�
cuss in more detail later	� despite that� this is often a worthwhile optimization
because� we remove the branch and the comparison associated with it� addi�
tionally� branches are good to eliminate because they often have a large cpi�

due to the time required to �ush the instruction bu
er if the hardware guesses
the branch direction incorrectly�

��� Our approach to avoiding conditional branches

There at two steps to our approach� First� we analyze the code and determine
which branches can be eliminated� additional state is computed� whenever pos�
sible� so as to predict which direction branches would go along certain paths in
the program� Second� we use this information to duplicate blocks �and eliminate
branches	 along paths where we know the direction of eliminable branches�

Our approach is very similar in many ways to the approach in the original
paper by Mueller and Whalley �MuW��� �henceforth abbreviated as MW�	 The
reason we decided to examine and implement their paper is because we feel we
could do better in some respects

�� We �rst discuss a shortcoming in MW which might produce buggy opti�
mized code in some �rare	 cases�

�� The heuristics described by MW in their paper for determining when �and
how	 branches can be avoided and their direction predicted� are rather
poorly explained and structured� We present a much more modular and
easily extendable method for performing intraprocedural branch analysis�
based on a bit vector data �ow analysis�

�number of cycles per instruction

Feigin� Surdulescu� Conditional Branch Elimination �

�� The MW restructuring algorithm su
ers from similar ambiguity� MW
claim that the restructuring needs to be performed on an individual loop
basis� while we don�t feel that this is necessary �see Future Work section
for details on this�	

�� Last but not least� we wanted to explore implementation details and dif�
�culties for this optimization pass on the SUIF� platform� We can only
hope that this work will be useful as well as used and extended later on�

� Related Work

Please refer to the Related Work section in �MuW��� for all related preceding
work�

�YoS��� performed a pro�le history based branch prediction and code trans�
formation�

Bodik� Gupta and So
a extended �MuW��� to perform not only intraproce�
dural� but interprocedural conditional branch analysis and elimination as well�
�BoGuS���

� Motivation

Please refer to theMotivation section in �MuW��� for three very good examples�
We choose to expand on one of their examples in order to reveal what we

consider a potential bug and comment on it� The example in question is the
second one in �MuW���

Original code After restructuring

while �i � ��� �� somecmd	

A�

i���

�

while �i � ���	

A�

i���

�

while �somecmd	

A�

i���

�

Clearly� in most cases� the optimization will work correctly rather than
checking both conditions in the loop �once i goes over ���	� we can check them
successively and therefore have to perform roughly half as many comparisons
�depending on the life span of somecmd	�

�Stanford University Intermediate Form

Feigin� Surdulescu� Conditional Branch Elimination �

However� what may just as well happen is that� while somecmd is being
successively computed� i will over�ow and come back down to � �or �����
depending on the type	�in any event� less than ��� � This means that the loop
may continue to run because the �rst condition is now true� and not the second
one� In the restructured code� once the �rst condition is �exhausted�� there is no
way to go back to it� meaning that if it is indeed the case that the original code
assumes over�ow in its execution� the optimizer will not catch it and produce
incorrect �optimized	 code�

In general� it is rarely �if ever	 the case that �correct� code will make such
assumptions� but if it does� the optimizer will produce semantically di
erent
optimized code� We have not reached a conclusion on what may be a ��x�
for this problem� One possible approach is to consider type information on the
variables examined and try to see �in the branch analysis section	 what may
happen if over�ow occurs upon various arithmetic operations�

� Avoidable Branch Detection

��� Overview

The idea behind avoidable branch detection is twofold

�� Computation of the information necessary to tell how a branch result is
a
ected when the instructions of a particular node are executed� This
information is necessary for the restructuring phase�

�� Computation of what branches are avoidable� so that the restructuring
algorithm does not needlessly copy nodes in an attempt to avoid branches
that do not meet the conditions of being avoidable �i�e� branches for which
there is no path along which they are known�	

As previously mentioned� we have implemented the MW section on Deter�

mining Whether Branches Can Be Avoided as a forward bit�vector data�ow
analysis�

The data�ow analysis will search all execution paths in an attempt to �nd
branches for which there exists an execution path to the branch along which the
branch result is known�

It is important to make a distinction between branches that are known to
be taken and branches that are known to fall through� This is a distinction
that MW alludes to� but never fully explains� The reason it is important to
make this distinction is because certain instructions only a
ect the branch if
the branch result is known to be one way or the other� Recalling the example
in the introduction� a�� keeps the branch on a�� known to be taken if it was
originally known to be taken� because incrementing a preserves the condition
that a��� However� if this branch were known to fall through� the instruction a��
would not preserve this condition� because incrementing a would not necessarily
preserve the condition a��� Thus it is not only important to know that the

Feigin� Surdulescu� Conditional Branch Elimination �

branch result is known�it is also important that we know the direction of the
branch�

Keeping this in mind� the goal of the data�ow analysis is to produce the
following four sets for every node n in our control �ow graph

TAKEN IN�n� The set of all branches which could be known to take when
we enter n�

FALLTHROUGH IN�n� The set of all branches which could be known to
fall through when we enter n�

TAKEN OUT�n� The set of all branches which could be known to take
when we exit n�

FALLTHROUGH OUT�n� The set of all branches which could be known
to fall through when we exit n�

In order to compute the e
ect of certain execution paths on a branch� it is
necessary to somehow determine the e
ects that the instructions on the path
will have on the branch condition� To this end� we de�ne the following four
terms� for the e
ect an instruction i can have on a branch b

�� i is said to taken�generate b if� after executing i� b is always known to
take� For example� the instruction a� taken�generates a branch whose
take condition is a��� since setting a to be � clearly makes the take con�
dition a�� be true�

�� Analogously� i is said to fallthrough�generate b if� after executing i�
b is always known to fall through� For example� the instruction a�

fallthrough�generates a branch whose take condition is a��� since setting
a to be � clearly makes the take condition a�� be false�

�� i is said to taken�kill b if� when we know b is going to take� executing
i makes it so we don�t necessarily still know that b is going to take� For
example� the instruction a�� taken�kills a branch whose take condition is
a��� since decrementing a might cause the take condition a�� to be false�
even though we had known it to be true previously�

�� i is said to fallthrough�kill b if� when we know b is going to fall through�
executing imakes it so we don�t necessarily still know that b is going to fall
through� For example� the instruction a�� fallthrough�kills a branch whose
take condition is a��� since incrementing a might cause the take condition
a�� to be true� even though we had known it to be false previously�

Note that one instruction can fall into more than one of these categories�
For example� an instruction that taken�generates a particular branch must also
necessarily fallthrough�kill it� so it belongs to both �classes��

It is fairly straightforward to extend these four categorizations to pertain to
nodes rather than individual instructions� Thus� we associate the following four
sets with each node n in our control �ow graph�

Feigin� Surdulescu� Conditional Branch Elimination �

TAKEN GEN�n� The set of all branches which are taken�generated by an
instruction in n and are not subsequently taken�killed by any instruction
in n�

FALLTHROUGH GEN�n� The set of all branches which are fallthrough�
generated by an instruction in n and are not subsequently fallthrough�
killed by any instruction in n�

TAKEN KILL�n� The set of all branches which are taken�killed by an in�
struction in n and are not subsequently taken�generated by any instruction
in n�

FALLTHROUGH KILL�n� The set of all branches which are fallthrough�
killed by an instruction in n and are not subsequently fallthrough�generated
by any instruction in n�

Discussion of exactly how these sets are constructed is deferred until the
next section of this paper�

Given these sets� however� we can now describe how the data�ow analy�
sis will be performed� First� the TAKEN GEN� FALLTHROUGH GEN� TAKEN KILL�
and FALLTHROUGH KILL sets are computed for each node� Then� the TAKEN IN�
FALLTHROUGH IN� TAKEN OUT� and FALLTHROUGH OUT sets are created for each
node� and initialized to be empty� Then� while there are any changes in any
node�s sets� the following updating functions are performed �in a standard� for�
ward data�ow analysis manner	 to each node n

TAKEN IN�n	 �
�

x�pred�n	

�TAKEN OUT�x	 � fbranches in x which take to ng	

FALLTHROUGH IN�n	 �
�

x�pred�n	

�FALLTHROUGH OUT�x	 � fbranches in x which fallthrough to ng	

TAKEN OUT�n	 � �TAKEN IN�n	� TAKEN KILL�n		 � TAKEN GEN�n	

FALLTHROUGH OUT�n	 � �FALLTHROUGH IN�n	� FALLTHROUGH KILL�n		 � FALLTHROUGH GEN�n	

Once this analysis has run to completion� all that remains is to determine
which branches are avoidable �or� equivalently� which nodes contain avoidable
branches	� A node n contains an avoidable branch if it meets the following
conditions

�� n contains a conditional branch b�

�� b � TAKEN IN�n	 and b �� TAKEN KILL�n	� or b � FALLTHROUGH IN�n	
and b �� FALLTHROUGH KILL�n	� Basically� this condition stipulates that
it�s possible for us to know the result of the branch coming into n� and
no instruction in n kills this result� �If there were such an instruction�
no amount of control �ow graph restructuring could possibly allow us to
know the branch result before the branch is executed� because it wouldn�t
matter what execution path we�d taken to get to n�	

Feigin� Surdulescu� Conditional Branch Elimination �

��� Computing the gen and kill sets

Wewill now discuss how we compute the TAKEN GEN� FALLTHROUGH GEN� TAKEN KILL

and FALLTHROUGH KILL sets for each node n� The main problem is determining
the e
ects of individual instructions on branches� once this information has been
determined� it is fairly simple to construct the four sets for each node�

We acknowledge that the way in which our current implementation performs
this analysis is by no means optimal�these issues will be touched upon in the
Future Work section�

We classify all instructions into one of the following categories

�� unknown e�ect The instruction has an unknown e
ect on program
state� It may change any number of registers� variables� or memory loca�
tions� A call is an example of this type of instruction� �This is the default
classi�cation for an instruction�	

�� no e�ect The instruction does not change program state�i�e� it a
ects
no registers� variables� or memory� A label is an example of this type of
instruction�

�� writes memory The instruction writes to memory� A store instruction
is an example of this type of instruction�

�� changes destination This instruction changes its destination register
or variable in some unknown way� A mov instruction is an example of this
type of instruction�

�� sets destination The instruction sets its destination to a constant value�
A load constant instruction is an example of this type of instruction�

�� increases destination The instruction increases the value of its desti�
nation� Adding a positive constant to a register is an example of this type
of instruction�

�� decreases destination The instruction decreases the value of its desti�
nation� Subtracting a positive constant from a register is an example of
this type of instruction�

We then classify branch conditions into the di
erent types� and use the type
of the branch to determine the e
ect a particular instruction will have on that
branch� The four types of branches are as follows �

�� generic The branch condition is arbitrarily complex� This is the default
classi�cation for a branch condition�

Generic branches are both taken�killed and fallthrough�killed by

�a	 Any instruction which has an unknown e
ect�

�Note that use of the term register in these classi�cations can refer also to a variable or

virtual register�

Feigin� Surdulescu� Conditional Branch Elimination �

�b	 Any instruction which a
ects �changes� sets� increases� or decreases	
a destination which is an operand of the branch comparison�

�c	 Any instruction which writes memory� if the branch condition per�
forms any loads�

Generic branches are never taken�generated or fallthrough�generated by
an instruction�

�� register The branch condition is a single register� and therefore the
branch condition depends on whether or not that register is equal to zero�

Register branches are both taken�killed and fallthrough�killed by

�a	 Any instruction which has an unknown e
ect�

�b	 Any instruction which changes� increases� or decreases the register
used for the comparison�

Register branches are taken�generated �and thus fallthrough�killed	 by any
instruction that sets the register to a non�zero value� �

Register branches are fallthrough�generated �and thus also taken�killed	
by any instruction which sets the register to be zero�

�� register�register The branch condition compares two registers� r��r�
is an example of this type of branch condition�

Register�register branches are both taken�killed and fallthrough�killed by

�a	 Any instruction which has an unknown e
ect�

�b	 Any instruction which changes either register�

Register�register branches are taken�killed �but not fallthrough�killed	 by

�a	 Any instruction which increases whichever register needs to be smaller
for the branch to take�

�b	 Any instruction which increases whichever register needs to be larger
in the for the branch to take�

Analogously� register�register branches are fallthrough�killed �but not taken
killed	 by

�a	 Any instruction which increases whichever register needs to be larger
for the branch to take�

�This is actually somewhat of an oversimpli�cation� It is not true that the branch will

always take when the branch condition is true�there are also branches which take when their

branch condition is false� But this kind of branch can be handled analogously to the way a

true branch is handled� and thus� for purposes of clarity� we will only consider true branches

throughout this section of the paper�

Feigin� Surdulescu� Conditional Branch Elimination ��

�b	 Any instruction which decreases whichever register needs to be smaller
for the branch to take�

�If the two registers need to be equal or not equal for the branch to
take� any increase or decrease to one register will both taken�kill and
fallthrough�kill the branch�	

Register�register branches are never taken�generated or fallthrough�generated
in the current implementation�

�� register�constant The branch condition compares a register and a con�
stant� r��� is an example of this type of branch condition�

Register�constant branches are both taken�killed and fallthrough�killed by

�a	 Any instruction which has an unknown e
ect�

�b	 Any instruction which changes the register�

Register�constant branches are taken�killed �but not fallthrough�killed	
by

�a	 Any instruction which increases the register if the register needs to
be smaller than the constant for the branch to take�

�b	 Any instruction which decreases the register if the register needs to
be larger than the constant for the branch to take�

Analogously� register�constant branches are fallthrough�killed �but not
taken�killed	 by

�a	 Any instruction which decreases the register if the register needs to
be smaller than the constant for the branch to take�

�b	 Any instruction which increases the register if the register needs to
be larger than the constant for the branch to take�

�If the register needs to be equal to or not equal to the constant for the
branch to take� then increasing or decreasing the register both taken�kills
and fallthrough�kills the branch�	

Register�constant branches are taken�generated �and thus fallthrough�killed	
by any instruction which sets the register to a constant which has the
proper relation to the constant in the comparison in order to make the
branch take�

Register�constant branches are fallthrough�generated �and thus taken�killed	
by any instruction which sets the register to a constant which has the
proper relation to the constant in the comparison in order to make the
branch fall through�

Once the e
ects of every instruction in a node on every branch in the pro�
gram have been computed� the TAKEN GEN� FALLTHROUGH GEN� TAKEN KILL� and
FALLTHROUGH KILL sets can be constructed according to the de�nitions in the
previous subsection�

Feigin� Surdulescu� Conditional Branch Elimination ��

� Graph Restructuring

��� An example

Consider the following piece of C code

void main�	

int i� j� k� q�

int nop�

do

if �i � �	

i q�

� else

if �j � �	

nop ��

� else

j q�

�

�

k���

� while �k � �	�

�

The code itself simply runs in an in�nite loop� We exhibit it only because it
has a very interesting �ow graph� which we would like to analyze �see �gure ��	

The notation �� next to some of the nodes �such as node � for instance	
means that the code in node � taken�kills and fallthrough�kills the branch in
node ��

Note that the branches in nodes � and � are avoidable� whereas the branch in
node � is not �see the Introduction and the DFA section on how this information
is obtained�	

The very basic skeleton of the restructuring algorithm is as follows

�� Enumerate all the avoidable branches in the graph and mark their state
as unknown� call this list of branches and states L�

�� Copy the root of the cfg� call it C and set its instate to be L�

�� Using the gen and kill sets from the data �ow analysis �the information
about which branches are a
ected by which node	� compute the outstate
of C� from its instate �that is� examine how this block of instructions
a
ects the state of the avoidable branches upon exit from the block�	

�� Make copies of C�s successors� Set their instate to be the outstate of C�
Iterate through all successors� Call the current successor S�

Feigin� Surdulescu� Conditional Branch Elimination ��

Entry

7

2<

>4

9 Exit

1

2

3 4

5 6

8<

8

Figure � Original CFG

�� If C contains a conditional branch� mark the instate of S with the direction
followed by that branch to get from C to S�

�� Look through the newly created graph so far if there is another copy of S
with the same instate as S for all avoidable branches that can be reached

from S� then connect C to that node� Otherwise connect C to S and stick
S in the graph�

�� Continue until there are no nodes left to analyze�

The restructured graph is in �gure �� The blocks whose box is dotted are
instances of eliminated branches� their name ��a etc�	 indicates the number
of the blocks of which they are clones �both in the dummy graph as well as
in the original graph�	 The information outside certain blocks indicates the
branches and the direction of those branches that was followed �and known	 up
to reaching the current block�

��� The algorithm

The fundamental di
erence between our algorithm and the one in �MuW��� is
that we only compare instates �in the penultimate step above	 for the avoidable
branches that are reachable from the current node �the original paper compares
the instate for all avoidable branches�	

The information required to determine if an �avoidable	 branch is reachable
from some given node can be easily precomputed in a simple data �ow analysis

Feigin� Surdulescu� Conditional Branch Elimination ��

7a

1

2

4

66

9

2T

2T4F

2T4F

2T4F

2T

2T

2b 2c

7c

8b

7b

8c

2T

Entry

Exit

3

8a

2T4F

2T4F

2T

4b

Figure � Restructured CFG

pass�
Here�s the pseudocode for the algorithm� The algorithm is only executed if

the graph has more than � nodes and there are avoidable branches in it� Variable
names are� in general� indicative of their origin in the graphs �c indicates a
cloned node in the new graph� o indicates a node in the original graph�	

LET o�root be the original root of the graph

COPY o�root into c�root

SET the instate of c�root to be a list of all avoidable branches�

with their state set to UNKNOWN�

LET dummy�list be a list of nodes� put c�root on it

WHILE dummy�list is not empty

LET c�elem be the first element on the list

Compute the outstate of c�elem from its instate

Try to remove a branch from the c�elem

�if its instate contains a known state for the

branch in c�elem	

Feigin� Surdulescu� Conditional Branch Elimination ��

FOR each successor of c�elem

LET the current successor be c�succ and make a copy

of it in the new graph�

SET c�succ�s instate to be c�elem�s outstate

IF we got to c�succ by following a branch from c�elem�

and that branch is avoidable� then set c�succ�s

instate to reflect the direction of that branch�

ENDIF

IF there is another node �in the newly created graph	

with the same instate as c�succ

for all avoidable branches reachable from c�succ

THEN

delete the copy of c�succ and

use that node instead

ELSE

keep the copy of c�succ in the graph and

attach it to the dummy�list

ENDIF

Mark c�succ as successor of c�elem

ENDFOR

ENDWHILE

After the graph is restructured� standard cleanup routines are involved

�� Optimize jumps there could be blocks that consisted entirely of one avoid�
able branch� once removed� those blocks are now an unconditional branch
we want to replace any jump to that block with the ultimate destination
of that block�

�� Merge block sequences newly created blocks� especially the ones that
come from blocks whose branches were remove� might be coalesced to�
gether if there are no branches in between them�

�� Remove dead code

� Performance Results

First we ran the optimization pass on a set of tailor�made tests that we expected
very good results out of� The tests are all in ��be�toy �see section on Source

Tree Structure	�
Legend

�� avd � avoidable

Feigin� Surdulescu� Conditional Branch Elimination ��

�� cbr � conditional branch

�� instr � instruction

�� func � function

�� res � restructured

�� dyn � dynamic

Here are the numbers we gathered� most of the programs consist of only
one function� so there will be no di
erence between the global numbers and
the per function numbers� In addition to counting conditional branches� we
also counted unconditional branches �their number is relevant since we don�t
perform any code layout and the increase in nodes could produce an increase in
unconditional branches due to the layout of blocks in the �nal code�	

First� static data

Name Static avd cbr count Static instr increase

Total Per Func Per Res Func Total Res Func
toy� � � � ����� �����
toy� � � � ����� �����
toy� � � � ������ ������

Now� some dynamic numbers �positive is good� negative is bad	

Name Dyn avd cbr
cbr Dyn instr decrease

total cbr jmp
toy� ����� ����� ����� ��
toy� ����� ���� ����� ������
toy� ����� ����� ������ ��

Just for edi�cation� here�s the code for toy��c

void main�	

int i��

int x�� y�� z��

int zero�� one��

do

if�x	

if�z	

zzero�

else

zero��

�

else

xone�

Feigin� Surdulescu� Conditional Branch Elimination ��

i���

� while �i � ����	�

�

Next� we tested some �real applications�� Overall� the performance results
weren�t nearly as good� On the tests that we chose to run branch elimination
on� the average dynamic conditional branch count went down� on average� by
���� �with a mode less than ����	�a far cry from the �MuW��� average� which
veered somewhere around ����

Let�s look at the numbers �rst and then we�ll talk about them� First� static
data

Name Static avd cbr count Static instr increase

Total Per Func Per Res Func Total Res Func
compress�� � ��� ��� ����� �����
eqntott�� �� ��� ��� ������ �������
espresso�� �� ���� ���� ����� �����
gzip �� ���� ���� ����� �����
li�� �� ���� ���� ���� ����
m��ksim�� �� ���� ���� ����� �����
sort �� ���� � ������ ������
wc � ���� ���� ����� �����

Now� some dynamic numbers �positive is good� negative is bad	

Name Dyn avd cbr
cbr

Dyn instr decrease

total cbr jmp rdmem wrmem
compress�� ����� ����� ����� ������ ����� �����
eqntott�� ����� ����� ����� ������ ����� �����
espresso�� ���� ������ ����� �������� ����� �����
gzip ���� ����� ����� ������ ����� �����
li�� ���� ������ ����� ������� ������ �����
m��ksim�� ���� ������ ����� ������� ����� �����
sort ���� ������ ����� �������� ����� �����
wc ����� ������ ������ �������� ����� �����

There are a few items to note in this data

�� The total dynamic instruction count went up in certain cases� Almost
invariably� this is due to an increase in the dynamic jmp count due to
poor layout in the restructured graph �see for instance the numbers for
espresso���	 This is easily explained by the way we build the graph the
original graph is traversed and cloned in a breadth �rst fashion �whereas
the block layout should follow a depth �rst traversal in order to decrease
the number of jmp�s between successors�	

�� Another conjecture we had about the above was that there was more

Feigin� Surdulescu� Conditional Branch Elimination ��

register pressure due to code restructuring� and thus there more memory
spills inserted by the register allocator� Therefore we gathered numbers
for rdmem and wrmem instructions� There were almost no increases in these
counts �with the one exception of li�� which was insigni�cant	 so it must
be that the increase in jmp�s is the reason for dynamic instruction count
increase�

�� The decrease in cbr�s is very small� In general� there is a strong correlation
between the dynamic number of cbr�s and the ratio between dynamic
number of avoidable cbr�s to total cbr�s ��rst column in the table above�	
In many cases� the avoidable branches were hit very rarely during the
execution of the program� so it�s no surprise that we didn�t see a strong
reduction in their number when executing the optimized code�

Overall� despite the weak decrease in dynamic conditional branch count in
�real applications�� we are satis�ed with the numbers� In most cases above� the
poor performance is explained by the fact that avoidable branches are rarely
hit along common execution paths in these programs� The overall dynamic
instruction count can be readily improved by some rudimentary code layout�
which would reduce the dynamic jmp count�

� Future Work

��� DFA algorithms�

�� The algorithm would clearly bene�t from a more advanced analysis in
the construction of the TAKEN GEN� FALLTHROUGH GEN� TAKEN KILL� and
FALLTHROUGH KILL sets�

By considering only one instruction at a time� we clearly lose a lot of
potential data� For instance� in our current implementation� the instruc�
tion mov r�� r� preceded by the instruction ldc r�� �� will be analyzed
merely as changing r�� It will not be recognized as setting r� to �� which
it clearly does� One possible solution to this is trying to keep track of
which registers are known to have constant values at a certain point in
the program� Another possible solution is doing some sort of range analy�
sis on the variables in the program� so that we can know something about
what value a variable will have when it is assigned the value of another
variable�

Also� the generic branch type is much too limited� and doesn�t really take
advantage of all the information at our disposal it assumes the branch
to be killed by any instruction that modi�es any of the operands of the
comparison� Probably the correct way to do this sort of analysis is to
construct the entire expression tree for the branch condition along each
path� and see what we can then tell about how the branch condition is
a
ected along certain paths� We note� however� that this sort of path
analysis may be impossible in the current bit�vector data�ow analysis

Feigin� Surdulescu� Conditional Branch Elimination ��

model� and may make the data�ow analysis much slower� because of the
exponential number of paths in a program�

�� A better representation of branches than is currently implemented would
be very useful� both because of the problems stated above with the generic
branch class� and because it would make branch subsumption calculations
more versatile�

�� The current implementation of the data�ow analysis oversimpli�es the
known�unknown transitions somewhat� It is possible for an instruction
to make the state of a branch go directly from being taken to being
fallthrough �or vice�versa	� a change which is not taken advantage of in
our current implementation� For example� if the take�condition r�r� is
known to be true� incrementing r� makes it known to be false� and thus
makes the branch be known to fall through� In our current implementa�
tion� an instruction that increments r� will taken�kill the branch but not
fallthrough�generate it� We note that any solution to this problem will
require reworking the nature of the bit�vector data�ow analysis �since the
current system of gen and kill sets can�t intelligently handle this type of
e
ect	� and the resulting increase in complexity may not be worth the ef�
fort� because it is doubtful that this will dramatically increase the number
of avoidable branches�

��� Restructuring algorithms�

�� Loop Detection and Exploitation MW claim that by performing this op�
timization on a per�loop basis �i�e� start with the innermost loop� optimize
it� go to the next loop and optimize it but do not re�optimize the inner
one� etc	 will dramatically reduce code size� We feel that by ignoring
loops and looking at the code globally� the performance improvements are
greater� This� of course� comes at the increased cost of code blowup� It
might be interesting to explore the other alternative as well and compare
the two�

�� Code Repositioning As this time� due to large increase in code size�
there are very many unconditional jumps introduced in between successive
blocks �there is no layout intelligence in the code at this point� so succes�
sive blocks in the cfg do not necessarily end up in consecutive positions
in the �nal code�	 In some pathological cases� the number of conditional
branches eliminated is less than the number of unconditional jumps intro�
duced� We are certain that this can be improved by a few simple layout
heuristics�

�� Inlining It would be interesting to experiment with some simple procedure
inlining� and see how this a
ects the performance of branch elimination
�determine whether more or less branches can be eliminated� inspect the
growth in number of nodes and code size etc�	

Feigin� Surdulescu� Conditional Branch Elimination ��

� SUIF Implementation Details

	�� DFA algorithms

The DFA library is going through another revision� this section will be added
as soon as the new version is checked in�

	�� Restructuring algorithm

All the restructure code is in the �le ��be�be�cc �see the section on the Source
Tree Structure for details�	

����� Hungarian notation

There was little attempt for a consistent �and cryptic	 variable and function
Hungarian notation� However� for ease� especially in the restructure algorithm�
all o pre�xes for variables �o root etc�	 indicate an original node in the original
graph� all the c pre�xes �c root etc�	 indicate clones in the restructured graph�

����� Node properties

One of the serious drawbacks encountered in writing the restructuring algorithm
is that there are no annotations for the cfg node class� As such� we had to
implement a system of keeping track of and attaching certain properties to
nodes �such as the instate� the outstate etc�	

Class node prop implements properties for cfg nodes� The properties that
can currently be attached are

�� branch list � instate

�� branch list � outstate

�� cfg node list � clone

The branch list is a linked list of branch state objects� each of which can
hold information about the id of a cfg node that contains an avoidable branch
and the direction of that branch at the instate or outstate of a block� The
branch direction can be one of TRUE �taken	� FALSE �fallthrough	 or UNKNOWN�

The clone property is a list that keeps track of all the nodes that have been
cloned out of this particular one� This is used to retrieve the �original� node in
the �original� graph from a clone in the restructured graph�

The node properties live on a hash table� indexed by the cfg node�s id�
normally� the table achieves O��	 lookup times�

Relevant eponymous functions for accessing and modifying properties are

�� get prop�	

�� add prop�	

Feigin� Surdulescu� Conditional Branch Elimination ��

�� remove prop�	

�� connect prop�	 �connects two nodes that are clones of each other by
adding relevant data to the clone property list for both of them�	

A related function is get o�	 which obtains the original node from a cloned
node by looking it up on the clone list in the clone�s property�

����� New graph structure

In order to �nd a node with the same instate as a clone �see the end of the
restructure algorithm and the function find same instate�		� we somehow
have to optimally the search through the newly restructured graph �which can
get to be rather large in cases�	 This is done by hashing all the nodes in the
cloned graph by the index of the original node �in the original graph	 where
they came from� In this scenario� when looking up a �cloned	 node� we simply
have to search the bucket for other similar clones and see if there is one with
the same instate�

����	 Future work

It would be really nice to make cfg node derived from suif object so that
annotations can be attached to it�

	�� Source Tree Structure and Binaries

The source for the project is organized in the following tree

�
ab test Source for a debugging tool ab test which displays� in detail� all
the FALLTHROUGH and TAKE insets and outsets for all blocks of a
program�s cfg� Used to test the correctness of the dfa implementation�
preserved for historical reasons only�

Executed with a low�suif �sfl �le as input� produces output on stderr�

�
ab test
test A few useful tests for ab test�

�
be Source for the branch elimination pass be� The binary takes as input
a low�suif �sfl �le and outputs another low�suif �le that�s restructured
according to the branch elimination algorithm�

The program understands either or both of two command line parameters

�� �count counts the total number of conditional branches and the
number of avoidable branches in the program� It also annotates
avoidable branches so that they can be dynamically counted later
on� The count output is produced �or appended	 in a �le LOG in the
current directory �if the �le doesn�t exist� it is created�	

�� �restructure speci�es whether to restructure the graph or not�

Feigin� Surdulescu� Conditional Branch Elimination ��

Additional scripts of interest in this directory are variants of ascc��

�� ascc�S standard SUIF script

�� ascc�be�S restructures the graph by executing be �restructure

before agen

�� ascc�be�halt�S restructures and instruments binaries �see be�counts
below�	

�� ascc�halt�S only instruments binaries without restructuring them
�it does� however� execute be �count to gather statistics on the bi�
nary and dynamically count avoidable branches	

�
be
sim A rudimentary simulator for suif cfg trees that was used to im�
plement a test the preliminary restructuring algorithm� Preserved for
historical reasons only�

�
be
toy Simple� tailor�made� tests used to exhibit the amazing power of our
optimization pass�

�
dfa Source for the extended dfa library� that contains the analysis for avoid�
able branches and reachable blocks� Compiles to a static and dynamic
libdfa��a�so��

�
doc The �tex� �fig� �eps �les that constitute this document� To compile
the �dvi version of the paper� type latex proj�tex�

�
haltsuif
be�counts Source for a binary be�counts used to instrument the
cfg of a program and prepare it for halt� The cfg is instrumented with
information about the number of total instructions� conditional branches�
avoidable conditional branches and unconditional jumps� The binary is
executed as be�counts file�af file�ae�

�
count Source for a binary count which counts the number of e
ective
machine instructions in a machine suif program �ignoring labels etc�	 The
program is executed as count file�ae and produces �or appends	 its
input to a �le LOG in the current directory �if the �le doesn�t exist� it
creates one�	 Used to determine code size increase after restructuring�

All these binaries compile by simply typing make in their respective directo�
ries�

� Conclusions

To be written when we�re actually done with the project�

Feigin� Surdulescu� Conditional Branch Elimination ��

�	 Acknowledgments

We would like to thank Prof� Mike Smith �smith�deas�harvard�edu	 for the
many hours spent with us discussing implementation approaches� optimizations
and the many other issues that we encountered�

Just as many thanks go to Glenn Holloway �holloway�eecs�harvard�edu	
for putting up with the �ood of questions we had about SUIF� for his long and
detailed replies and for helping us with many tools� among which a low SUIF
version of the cfg library�

�� References

�MuW��� �Avoiding Conditional Branches by Code Replication� � Frank
Mueller and David B� Whalley� SIGPLAN Notices� ����	������
June ����� Proceedings of the ACM SIGPLAN ��� Conference on

Programming Language Design and Implementation	

�YoS��� �Improving the Accuracy of Static Branch Prediction Us�

ing Branch Correlation�� Cli
 Young and Michael D� Smith�
ASPLOS�VI
 October ����

�BoGuS��� �Interprocedural Conditional Branch Elimination�� Ratislav
Bodik� Rajiv Gupta� Mary Lou So
a� PLDI ���

