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Abstract

This paper describes a method for avoiding conditional branches by
replicating code along known execution paths in a program. The first part
describes the algorithms used to determine what branches are avoidable
and under what circumstances; the second part describes a restructuring
algorithm that replicates parts of the graph, taking advantage of the in-
formation gathered in the first part. Statistics indicate reductions in total
as well as conditional branch instruction count.

There is little original work in this paper; most of it is based on [MuW92].

1 Introduction

1.1 What are avoidable branches?

Avoidable branches are conditional branches for which there exists some execu-
tion path through the program along which the result of the branch is known.

A simple example serves to illustrate the purpose of our project. Consider
the simple control-flow graph presented in figure 1.

There is a conditional branch in node 1, branching on the condition a>2 (i.e.
if a>5 is true, then the branch will take and jump to node 3, otherwise it will
fall-through to node 2.) Node 2 contains a procedure call. Node 3 contains the
instruction a++, which is the only instruction in node 3 which affects a. Nodes
4 and 5 contain no instructions that affect a.

On entrance to node 2 we knew that a>5 was false, because to get to node 2,
the branch in node 1 must have fallen-through. However, node 2 contains a pro-
cedure call, which may have some unknown effect on the value of a. Therefore,
we know nothing at the exit of node 2 about whether a>5 is true or false.

On entrance to node 3, we know that the condition a>5 is true, because to
get to node 3, the branch in node 1 must have taken. The only instruction in
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Figure 1: Original CFG

node 3 that affects a is a++. The instruction a++ has the effect of increasing
a (assuming no overflow—an issue that we will address later.) Thus, after the
instruction a++ executes, the condition a>5 will remain true; at the exit of node
3 we know that the condition a>5 is true, because it was true on entrance to
node 3, and no instruction in node 3 changed this fact. Therefore, at the exit
to node 3 we still know that the conditional branch in node 1 will take.

Nodes 4 and 5 do not affect a. So, when node 5 jumps back to node 1,
we know that the branch in node 1 will take if we reached node 1 along the
execution path 1 =+ 3 — 4 — 5 — 1. Thus the branch in node 1 is an avoidable
branch.

1.2 How can avoidable branches be eliminated?

With the control flow graph shown above, we can’t take advantage of the infor-
mation we have, because, when we reach node 1, we don’t know what execution
path we took to get there.

However, by using code duplication, we can restructure the control flow
graph to avoid this branch along the execution path where its result is known.

We first need to split node 4 into two identical copies—one (node 4a) whose
predecessor is node 2, the other (node 4b) whose predecessor is node 3. Likewise,
we duplicate node 5 into a node 5a whose predecessor is node 4a and a node 5b
whose predecessor is 4b.

We have now separated the two divergent execution paths. At the exit of
node 4a, we know nothing about the branch in node 1, whereas at the exit
of node 4b we know the branch in node 1 will still take. This is the point of
duplicating nodes: we can have node 5a jump back to our original node 1, which
contains the branch, since we still have to check the branch condition in this
case (our execution path made the condition unknown.) However, node 5b can
jump to a new copy of node 1 (called node 1b) that does not contain a branch
since we know that we reached node 1b along an execution path where we know
the branch to be taken and, therefore, we can simply eliminate the branch and
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replace it with a jump to the branch’s take target (in this case, node 3.)
The restructured control-flow graph looks like this (figure 2):

PAY4S

Y

-~ Bl

Figure 2: Restructured CFG

We have now eliminated the branch in node 1 along a particular execution
path. There are clear drawbacks with increased code size (which we will dis-
cuss in more detail later); despite that, this is often a worthwhile optimization
because, we remove the branch and the comparison associated with it; addi-
tionally, branches are good to eliminate because they often have a large cpi'
due to the time required to flush the instruction buffer if the hardware guesses
the branch direction incorrectly.

1.3 Owur approach to avoiding conditional branches

There at two steps to our approach. First, we analyze the code and determine
which branches can be eliminated; additional state is computed, whenever pos-
sible, so as to predict which direction branches would go along certain paths in
the program. Second, we use this information to duplicate blocks (and eliminate
branches) along paths where we know the direction of eliminable branches.

Our approach is very similar in many ways to the approach in the original
paper by Mueller and Whalley [MuW92] (henceforth abbreviated as MW.) The
reason we decided to examine and implement their paper is because we feel we
could do better in some respects:

1. We first discuss a shortcoming in MW which might produce buggy opti-
mized code in some (rare) cases.

2. The heuristics described by MW in their paper for determining when (and
how) branches can be avoided and their direction predicted, are rather
poorly explained and structured. We present a much more modular and
easily extendable method for performing intraprocedural branch analysis,
based on a bit vector data flow analysis.

Inumber of cycles per instruction
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3. The MW restructuring algorithm suffers from similar ambiguity. MW
claim that the restructuring needs to be performed on an individual loop
basis, while we don’t feel that this is necessary (see Future Work section
for details on this.)

4. Last but not least, we wanted to explore implementation details and dif-
ficulties for this optimization pass on the SUIF? platform. We can only
hope that this work will be useful as well as used and extended later on.

2 Related Work

Please refer to the Related Work section in [MuW92] for all related preceding
work.

[YoS94] performed a profile history based branch prediction and code trans-
formation.

Bodik, Gupta and Soffa extended [MuW92] to perform not only intraproce-
dural, but interprocedural conditional branch analysis and elimination as well.
[BoGuS97]

3 Motivation

Please refer to the Motivation section in [MuW92] for three very good examples.

We choose to expand on one of their examples in order to reveal what we
consider a potential bug and comment on it. The example in question is the
second one in [MuW92]:

Original code: After restructuring:
while (i < 100 || somecmd) { while (i < 100) {
A; A;
i++; i++;
} }
while (somecmd) {
A;
i++;

3

Clearly, in most cases, the optimization will work correctly: rather than
checking both conditions in the loop (once i goes over 100), we can check them
successively and therefore have to perform roughly half as many comparisons
(depending on the life span of somecmd).

2Stanford University Intermediate Form
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However, what may just as well happen is that, while somecmd is being
successively computed, i will overflow and come back down to 0 (or —23!
depending on the type)-in any event, less than 100! This means that the loop
may continue to run because the first condition is now true, and not the second
one. In the restructured code, once the first condition is “exhausted”, there is no
way to go back to it, meaning that if it is indeed the case that the original code
assumes overflow in its execution, the optimizer will not catch it and produce
incorrect (optimized) code.

In general, it is rarely (if ever) the case that “correct” code will make such
assumptions, but if it does, the optimizer will produce semantically different
optimized code. We have not reached a conclusion on what may be a “fix”
for this problem. One possible approach is to consider type information on the
variables examined and try to see (in the branch analysis section) what may
happen if overflow occurs upon various arithmetic operations.

4 Avoidable Branch Detection

4.1 Overview

The idea behind avoidable branch detection is twofold:

1. Computation of the information necessary to tell how a branch result is
affected when the instructions of a particular node are executed. This
information is necessary for the restructuring phase.

2. Computation of what branches are avoidable, so that the restructuring
algorithm does not needlessly copy nodes in an attempt to avoid branches
that do not meet the conditions of being avoidable (i.e. branches for which
there is no path along which they are known.)

As previously mentioned, we have implemented the MW section on Deter-
mining Whether Branches Can Be Awvoided as a forward bit-vector dataflow
analysis.

The dataflow analysis will search all execution paths in an attempt to find
branches for which there exists an execution path to the branch along which the
branch result is known.

It is important to make a distinction between branches that are known to
be taken and branches that are known to fall through. This is a distinction
that MW alludes to, but never fully explains. The reason it is important to
make this distinction is because certain instructions only affect the branch if
the branch result is known to be one way or the other. Recalling the example
in the introduction, a++ keeps the branch on a>5 known to be taken if it was
originally known to be taken, because incrementing a preserves the condition
that a>5. However, if this branch were known to fall through, the instruction a++
would not preserve this condition, because incrementing a would not necessarily
preserve the condition a<b5. Thus it is not only important to know that the
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branch result is known-it is also important that we know the direction of the
branch.

Keeping this in mind, the goal of the dataflow analysis is to produce the
following four sets for every node n in our control flow graph:

TAKEN_IN(n) : The set of all branches which could be known to take when
we enter n.

FALLTHROUGH_IN(n) : The set of all branches which could be known to
fall through when we enter n.

TAKEN_OUT(n) : The set of all branches which could be known to take
when we exit n.

FALLTHROUGH_OUT(n) : The set of all branches which could be known
to fall through when we exit n.

In order to compute the effect of certain execution paths on a branch, it is
necessary to somehow determine the effects that the instructions on the path
will have on the branch condition. To this end, we define the following four
terms, for the effect an instruction i can have on a branch b:

1. 1is said to taken-generate b if, after executing i, b is always known to
take. For example, the instruction a=7 taken-generates a branch whose
take condition is a>5, since setting a to be 7 clearly makes the take con-
dition a>5 be true.

2. Analogously, i is said to fallthrough-generate b if, after executing i,
b is always known to fall through. For example, the instruction a=3
fallthrough-generates a branch whose take condition is a>5, since setting
a to be 3 clearly makes the take condition a>5 be false.

3. 1is said to taken-kill b if, when we know b is going to take, executing
i makes it so we don’t necessarily still know that b is going to take. For
example, the instruction a-- taken-kills a branch whose take condition is
a>b, since decrementing a might cause the take condition a>5 to be false,
even though we had known it to be true previously.

4. iis said to fallthrough-kill b if, when we know b is going to fall through,
executing i makes it so we don’t necessarily still know that b is going to fall
through. For example, the instruction a++ fallthrough-kills a branch whose
take condition is a>5, since incrementing a might cause the take condition
a>5 to be true, even though we had known it to be false previously.

Note that one instruction can fall into more than one of these categories.
For example, an instruction that taken-generates a particular branch must also
necessarily fallthrough-kill it, so it belongs to both “classes”.

It is fairly straightforward to extend these four categorizations to pertain to
nodes rather than individual instructions. Thus, we associate the following four
sets with each node n in our control flow graph.
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TAKEN_GEN(n) : The set of all branches which are taken-generated by an
instruction in n and are not subsequently taken-killed by any instruction
in n.

FALLTHROUGH_GEN(n) : The set of all branches which are fallthrough-
generated by an instruction in n and are not subsequently fallthrough-
killed by any instruction in n.

TAKEN_KILL(n) : The set of all branches which are taken-killed by an in-
struction in n and are not subsequently taken-generated by any instruction
in n.

FALLTHROUGH_KILL(n) : The set of all branches which are fallthrough-
killed by an instruction in n and are not subsequently fallthrough-generated
by any instruction in n.

Discussion of exactly how these sets are constructed is deferred until the
next section of this paper.

Given these sets, however, we can now describe how the dataflow analy-
sis will be performed. First, the TAKEN_GEN, FALLTHROUGH_GEN, TAKEN KILL,
and FALLTHROUGHKILL sets are computed for each node. Then, the TAKEN_IN,
FALLTHROUGH_IN, TAKEN_OUT, and FALLTHROUGH_OUT sets are created for each
node, and initialized to be empty. Then, while there are any changes in any
node’s sets, the following updating functions are performed (in a standard, for-
ward dataflow analysis manner) to each node n:

TAKEN_IN(n) = U (TAKEN_OUT(z) U {branches in x which take to n})
zepred(n)
FALLTHROUGH_IN(n) = U (FALLTHROUGH_OUT(x) U {branches in x which fallthrough to n})
zepred(n)
TAKEN_OUT(n) = (TAKEN_IN(n) — TAKENKILL(n)) U TAKEN_GEN(n)
FALLTHROUGH.OUT(n) = (FALLTHROUGH_IN(n) — FALLTHROUGHKILL(n)) U FALLTHROUGH_GEN(n)

Once this analysis has run to completion, all that remains is to determine
which branches are avoidable (or, equivalently, which nodes contain avoidable
branches). A node n contains an avoidable branch if it meets the following
conditions:

1. n contains a conditional branch b.

2. b € TAKEN_IN(n) and b ¢ TAKENKILL(n), or b € FALLTHROUGH_IN(n)
and b ¢ FALLTHROUGH KILL(n). Basically, this condition stipulates that
it’s possible for us to know the result of the branch coming into n, and
no instruction in n kills this result. (If there were such an instruction,
no amount of control flow graph restructuring could possibly allow us to
know the branch result before the branch is executed, because it wouldn’t
matter what execution path we’d taken to get to n.)
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4.2 Computing the gen and kill sets

We will now discuss how we compute the TAKEN_GEN, FALLTHROUGH_GEN, TAKEN KILL
and FALLTHROUGH KILL sets for each node n. The main problem is determining
the effects of individual instructions on branches; once this information has been
determined, it is fairly simple to construct the four sets for each node.

We acknowledge that the way in which our current implementation performs
this analysis is by no means optimal-these issues will be touched upon in the
Future Work section.

We classify all instructions into one of the following categories:

1. unknown effect: The instruction has an unknown effect on program
state. It may change any number of registers, variables, or memory loca-
tions. A call is an example of this type of instruction. (This is the default
classification for an instruction.)

2. no effect: The instruction does not change program state—i.e. it affects
no registers, variables, or memory. A label is an example of this type of
instruction.

3. writes memory: The instruction writes to memory. A store instruction
is an example of this type of instruction.

4. changes destination: This instruction changes its destination register
or variable in some unknown way. A mov instruction is an example of this
type of instruction.

5. sets destination: The instruction sets its destination to a constant value.
A load constant instruction is an example of this type of instruction.

6. increases destination: The instruction increases the value of its desti-
nation. Adding a positive constant to a register is an example of this type
of instruction.

7. decreases destination: The instruction decreases the value of its desti-
nation. Subtracting a positive constant from a register is an example of
this type of instruction.

We then classify branch conditions into the different types, and use the type
of the branch to determine the effect a particular instruction will have on that
branch. The four types of branches are as follows: 3

1. generic: The branch condition is arbitrarily complex. This is the default
classification for a branch condition.

Generic branches are both taken-killed and fallthrough-killed by:

(a) Any instruction which has an unknown effect.

3Note that use of the term register in these classifications can refer also to a variable or
virtual register.
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(b) Any instruction which affects (changes, sets, increases, or decreases)
a destination which is an operand of the branch comparison.

(¢) Any instruction which writes memory, if the branch condition per-
forms any loads.

Generic branches are never taken-generated or fallthrough-generated by
an instruction.

2. register: The branch condition is a single register, and therefore the
branch condition depends on whether or not that register is equal to zero.
Register branches are both taken-killed and fallthrough-killed by:

(a) Any instruction which has an unknown effect.

(b) Any instruction which changes, increases, or decreases the register
used for the comparison.

Register branches are taken-generated (and thus fallthrough-killed) by any
instruction that sets the register to a non-zero value.

Register branches are fallthrough-generated (and thus also taken-killed)
by any instruction which sets the register to be zero.

3. register-register: The branch condition compares two registers. ri>r2
is an example of this type of branch condition.

Register-register branches are both taken-killed and fallthrough-killed by:

(a) Any instruction which has an unknown effect.

(b) Any instruction which changes either register.
Register-register branches are taken-killed (but not fallthrough-killed) by:

(a) Any instruction which increases whichever register needs to be smaller
for the branch to take.

(b) Any instruction which increases whichever register needs to be larger
in the for the branch to take.

Analogously, register-register branches are fallthrough-killed (but not taken
killed) by:

(a) Any instruction which increases whichever register needs to be larger
for the branch to take.

4This is actually somewhat of an oversimplification. It is not true that the branch will
always take when the branch condition is true—there are also branches which take when their
branch condition is false. But this kind of branch can be handled analogously to the way a
true branch is handled, and thus, for purposes of clarity, we will only consider true branches
throughout this section of the paper.
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(b) Any instruction which decreases whichever register needs to be smaller
for the branch to take.

(If the two registers need to be equal or not equal for the branch to
take, any increase or decrease to one register will both taken-kill and
fallthrough-kill the branch.)

Register-register branches are never taken-generated or fallthrough-generated
in the current implementation.

4. register-constant: The branch condition compares a register and a con-
stant. r1>5 is an example of this type of branch condition.

Register-constant branches are both taken-killed and fallthrough-killed by:

(a) Any instruction which has an unknown effect.

(b) Any instruction which changes the register.

Register-constant branches are taken-killed (but not fallthrough-killed)
by:

(a) Any instruction which increases the register if the register needs to
be smaller than the constant for the branch to take.

b) Any instruction which decreases the register if the register needs to
g g
be larger than the constant for the branch to take.

Analogously, register-constant branches are fallthrough-killed (but not
taken-killed) by:

a) Any instruction which decreases the register if the register needs to
g g
be smaller than the constant for the branch to take.

(b) Any instruction which increases the register if the register needs to
be larger than the constant for the branch to take.

(If the register needs to be equal to or not equal to the constant for the
branch to take, then increasing or decreasing the register both taken-kills
and fallthrough-kills the branch.)

Register-constant branches are taken-generated (and thus fallthrough-killed)
by any instruction which sets the register to a constant which has the
proper relation to the constant in the comparison in order to make the
branch take.

Register-constant branches are fallthrough-generated (and thus taken-killed)
by any instruction which sets the register to a constant which has the
proper relation to the constant in the comparison in order to make the
branch fall through.

Once the effects of every instruction in a node on every branch in the pro-
gram have been computed, the TAKEN_GEN, FALLTHROUGH_GEN, TAKEN KILL, and
FALLTHROUGH KILL sets can be constructed according to the definitions in the
previous subsection.
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5 Graph Restructuring

5.1 An example

Consider the following piece of C code:

void main()

{
int i, j, k, q;
int nop;

do {
if (1 >0) {
i=gq;
} else {
if (G >0) {
nop = 0;
} else {
j=aq
}
}

k++;

b

} while (k > 0);

The code itself simply runs in an infinite loop. We exhibit it only because it
has a very interesting flow graph, which we would like to analyze (see figure 3.)

The notation >4 next to some of the nodes (such as node 6 for instance)
means that the code in node 6 taken-kills and fallthrough-kills the branch in
node 4.

Note that the branches in nodes 2 and 4 are avoidable, whereas the branch in
node 9 is not (see the Introduction and the DFA section on how this information
is obtained.)

The very basic skeleton of the restructuring algorithm is as follows:

1. Enumerate all the avoidable branches in the graph and mark their state
as unknown; call this list of branches and states L.

2. Copy the root of the cfg, call it C' and set its instate to be L.

3. Using the gen and kill sets from the data flow analysis (the information
about which branches are affected by which node), compute the outstate
of C, from its instate (that is, examine how this block of instructions
affects the state of the avoidable branches upon exit from the block.)

4. Make copies of C’s successors. Set their instate to be the outstate of C.
Iterate through all successors. Call the current successor S.
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Figure 3: Original CFG

5. If C contains a conditional branch, mark the instate of S with the direction
followed by that branch to get from C to S.

6. Look through the newly created graph so far: if there is another copy of S
with the same instate as S for all avoidable branches that can be reached
from S, then connect C' to that node. Otherwise connect C to S and stick
S in the graph.

7. Continue until there are no nodes left to analyze.

The restructured graph is in figure 4. The blocks whose box is dotted are
instances of eliminated branches; their name (4a etc.) indicates the number
of the blocks of which they are clones (both in the dummy graph as well as
in the original graph.) The information outside certain blocks indicates the
branches and the direction of those branches that was followed (and known) up
to reaching the current block.

5.2 The algorithm

The fundamental difference between our algorithm and the one in [MuW92] is
that we only compare instates (in the penultimate step above) for the avoidable
branches that are reachable from the current node (the original paper compares
the instate for all avoidable branches.)

The information required to determine if an (avoidable) branch is reachable
from some given node can be easily precomputed in a simple data flow analysis
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Figure 4: Restructured CFG

pass.
Here’s the pseudocode for the algorithm. The algorithm is only executed if
the graph has more than 2 nodes and there are avoidable branches in it. Variable
names are, in general, indicative of their origin in the graphs (c_ indicates a
cloned node in the new graph, o_ indicates a node in the original graph.)

LET o_root be the original root of the graph

COPY o_root into c_root

SET the instate of c_root to be a list of all avoidable branches,
with their state set to UNKNOWN.

LET dummy_list be a list of nodes; put c_root on it

WHILE dummy_list is not empty
LET c_elem be the first element on the list
Compute the outstate of c_elem from its instate

Try to remove a branch from the c_elem
(if its instate contains a known state for the
branch in c_elem)
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FOR each successor of c_elem
LET the current successor be c_succ and make a copy
of it in the new graph.

SET c_succ’s instate to be c_elem’s outstate

IF we got to c_succ by following a branch from c_elem,
and that branch is avoidable, then set c_succ’s
instate to reflect the direction of that branch.

ENDIF

IF there is another node (in the newly created graph)
with the same instate as c_succ
for all avoidable branches reachable from c_succ
THEN
delete the copy of c_succ and
use that node instead
ELSE
keep the copy of c_succ in the graph and
attach it to the dummy_list
ENDIF

Mark c_succ as successor of c_elem
ENDFOR

ENDWHILE

6

After the graph is restructured, standard cleanup routines are involved:

1. Optimize jumps: there could be blocks that consisted entirely of one avoid-

able branch; once removed, those blocks are now an unconditional branch:
we want to replace any jump to that block with the ultimate destination
of that block.

. Merge block sequences: newly created blocks, especially the ones that

come from blocks whose branches were remove, might be coalesced to-
gether if there are no branches in between them.

. Remove dead code

Performance Results

First we ran the optimization pass on a set of tailor-made tests that we expected
very good results out of. The tests are all in ./be/toy (see section on Source
Tree Structure).

Legend:

1. avd = avoidable
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2. ¢br = conditional branch
. instr = instruction

. func = function

Tt o= W

. res = restructured
6. dyn = dynamic

Here are the numbers we gathered; most of the programs consist of only
one function, so there will be no difference between the global numbers and
the per function numbers. In addition to counting conditional branches, we
also counted unconditional branches (their number is relevant since we don’t
perform any code layout and the increase in nodes could produce an increase in
unconditional branches due to the layout of blocks in the final code.)

First, static data:

Name Static avd cbr count Static instr increase
Total Per Func Per Res Func | Total Res Func
toyl 1 1 1 -1.6%  -1.6%
toy2 1 1 1 60.2%  60.2%
toy3 2 2 2 -50.8% -50.8%
Now, some dynamic numbers (positive is good, negative is bad):
Name | Dyn % Dyn instr decrease
total  cbr jmp
toyl 50.0% 332% 33.3% oo%
toy2 33.3% 3.4%  50.0%  -33.6%
toy3 66.6% 59.8% 199.6% %

Just for edification, here’s the code for toy3.c:

void main()

{
int i=0;
int x=0, y=0, z=0;
int zero=0, one=1;

do {
if(x) {
if(z)
Z=Zero;
else
zero=0;
}
else
X=one;
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it++;

} while (i < 1000);
}

Next, we tested some “real applications.” Overall, the performance results
weren’t nearly as good. On the tests that we chose to run branch elimination
on, the average dynamic conditional branch count went down, on average, by
1.7% (with a mode less than 0.5%)-a far cry from the [MuW92] average, which
veered somewhere around 10%.

Let’s look at the numbers first and then we’ll talk about them. First, static
data:

Name Static avd cbr count Static instr increase

Total Per Func Per Res Func | Total Res Func
compress92 | 5 0.3 2.5 47.7%  55.3%
eqntott92 20 0.3 2.2 164.3% 182.25%
espresso92 | 58 0.16 1.48 14.3%  16.8%
gzip 32 0.32 2.28 71.6% 77. 7%
1192 14 0.03 1.55 1.8% 3.2%
m88ksim95 | 38 0.13 1.52 13.2% 16.9%
sort 28 0.75 4 445.5% 430.0%
we 1 0.11 0.11 1.66% 1.66%

Now, some dynamic numbers (positive is good, negative is bad):

Name Dyn % Dyn instr decrease
total cbr jmp rdmem wrmem

compress92 | 0.00% 0.00% 0.00% -0.08% 0.00%  0.00%
eqntott92 0.03% 0.04%  0.02%  26.96% 0.00%  0.00%
espresso92 | 1.2% -1.34%  0.42%  -126.71% 0.77%  0.08%
gzip 0.1% 0.33% 0.03%  19.31% 0.08%  0.08%
1192 5.1% -0.54% 0.09%  -31.06% -0.01% 0.00%
m88ksim95 | 0.6% -1.02% 0.06%  -28.61%  0.00%  0.00%
sort 2.3% -4.57% 1.19%  -504.35% 2.16%  0.55%
we 11.4% -2.13%  11.49% -288.33% 0.00%  0.00%

There are a few items to note in this data:

1. The total dynamic instruction count went up in certain cases. Almost
invariably, this is due to an increase in the dynamic jmp count due to
poor layout in the restructured graph (see for instance the numbers for
espresso92.) This is easily explained by the way we build the graph: the
original graph is traversed and cloned in a breadth first fashion (whereas
the block layout should follow a depth first traversal in order to decrease
the number of jmp’s between successors.)

2. Another conjecture we had about the above was that there was more
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register pressure due to code restructuring, and thus there more memory
spills inserted by the register allocator. Therefore we gathered numbers
for rdmem and wrmem instructions. There were almost no increases in these
counts (with the one exception of 1192 which was insignificant) so it must
be that the increase in jmp’s is the reason for dynamic instruction count
increase.

The decrease in cbr’s is very small. In general, there is a strong correlation
between the dynamic number of cbr’s and the ratio between dynamic
number of avoidable cbr’s to total cbr’s (first column in the table above.)
In many cases, the avoidable branches were hit very rarely during the
execution of the program, so it’s no surprise that we didn’t see a strong
reduction in their number when executing the optimized code.

Overall, despite the weak decrease in dynamic conditional branch count in
“real applications”, we are satisfied with the numbers. In most cases above, the
poor performance is explained by the fact that avoidable branches are rarely
hit along common execution paths in these programs. The overall dynamic
instruction count can be readily improved by some rudimentary code layout,
which would reduce the dynamic jmp count.

7 Future Work

7.1

1.

DFA algorithms:

The algorithm would clearly benefit from a more advanced analysis in
the construction of the TAKEN_GEN, FALLTHROUGH_GEN, TAKEN KILL, and
FALLTHROUGH KILL sets.

By considering only one instruction at a time, we clearly lose a lot of
potential data. For instance, in our current implementation, the instruc-
tion mov r1l, r2 preceded by the instruction 1dc r2, 5, will be analyzed
merely as changing r2. It will not be recognized as setting r2 to 5, which
it clearly does. One possible solution to this is trying to keep track of
which registers are known to have constant values at a certain point in
the program. Another possible solution is doing some sort of range analy-
sis on the variables in the program, so that we can know something about
what value a variable will have when it is assigned the value of another
variable.

Also, the generic branch type is much too limited, and doesn’t really take
advantage of all the information at our disposal: it assumes the branch
to be killed by any instruction that modifies any of the operands of the
comparison. Probably the correct way to do this sort of analysis is to
construct the entire expression tree for the branch condition along each
path, and see what we can then tell about how the branch condition is
affected along certain paths. We note, however, that this sort of path
analysis may be impossible in the current bit-vector dataflow analysis
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model, and may make the dataflow analysis much slower, because of the
exponential number of paths in a program.

A better representation of branches than is currently implemented would
be very useful, both because of the problems stated above with the generic
branch class, and because it would make branch subsumption calculations
more versatile.

The current implementation of the dataflow analysis oversimplifies the
known-unknown transitions somewhat. It is possible for an instruction
to make the state of a branch go directly from being taken to being
fallthrough (or vice-versa), a change which is not taken advantage of in
our current implementation. For example, if the take-condition ri==r2 is
known to be true, incrementing ri1 makes it known to be false, and thus
makes the branch be known to fall through. In our current implementa-
tion, an instruction that increments r1 will taken-kill the branch but not
fallthrough-generate it. We note that any solution to this problem will
require reworking the nature of the bit-vector dataflow analysis (since the
current system of gen and kill sets can’t intelligently handle this type of
effect), and the resulting increase in complexity may not be worth the ef-
fort, because it is doubtful that this will dramatically increase the number
of avoidable branches.

Restructuring algorithms:

. Loop Detection and Exploitation: MW claim that by performing this op-

timization on a per-loop basis (i.e. start with the innermost loop, optimize
it, go to the next loop and optimize it but do not re-optimize the inner
one, etc) will dramatically reduce code size. We feel that by ignoring
loops and looking at the code globally, the performance improvements are
greater. This, of course, comes at the increased cost of code blowup. It
might be interesting to explore the other alternative as well and compare
the two.

. Code Repositioning: As this time, due to large increase in code size,

there are very many unconditional jumps introduced in between successive
blocks (there is no layout intelligence in the code at this point, so succes-
sive blocks in the cfg do not necessarily end up in consecutive positions
in the final code.) In some pathological cases, the number of conditional
branches eliminated is less than the number of unconditional jumps intro-
duced. We are certain that this can be improved by a few simple layout
heuristics.

Inlining: It would be interesting to experiment with some simple procedure
inlining, and see how this affects the performance of branch elimination
(determine whether more or less branches can be eliminated, inspect the
growth in number of nodes and code size etc.)
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8 SUIF Implementation Details

8.1 DFA algorithms

The DFA library is going through another revision; this section will be added
as soon as the new version is checked in.

8.2 Restructuring algorithm

All the restructure code is in the file . /be/be.cc (see the section on the Source
Tree Structure for details.)

8.2.1 Hungarian notation

There was little attempt for a consistent (and cryptic) variable and function
Hungarian notation. However, for ease, especially in the restructure algorithm,
all o prefixes for variables (o_root etc.) indicate an original node in the original
graph; all the c prefixes (c_root etc.) indicate clones in the restructured graph.

8.2.2 Node properties

One of the serious drawbacks encountered in writing the restructuring algorithm
is that there are no annotations for the cfgmnode class. As such, we had to
implement a system of keeping track of and attaching certain properties to
nodes (such as the instate, the outstate etc.)

Class node_prop implements properties for cfg nodes. The properties that
can currently be attached are:

1. branch_list * instate
2. branch_list * outstate

3. cfgnode_list * clone

The branch_list is a linked list of branch_state objects, each of which can
hold information about the id of a cfgnode that contains an avoidable branch
and the direction of that branch at the instate or outstate of a block. The
branch direction can be one of TRUE (taken), FALSE (fallthrough) or UNKNOWN.

The clone property is a list that keeps track of all the nodes that have been
cloned out of this particular one. This is used to retrieve the “original” node in
the “original” graph from a clone in the restructured graph.

The node properties live on a hash table, indexed by the cfg node’s id;
normally, the table achieves O(1) lookup times.

Relevant, eponymous functions for accessing and modifying properties are:

1. get_prop()
2. add_prop()
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3. remove_prop()

4. connect_prop() (connects two nodes that are clones of each other by
adding relevant data to the clone property list for both of them.)

A related function is get_o() which obtains the original node from a cloned
node by looking it up on the clone list in the clone’s property.

8.2.3 New graph structure

In order to find a node with the same instate as a clone (see the end of the
restructure algorithm and the function find same_instate()), we somehow
have to optimally the search through the newly restructured graph (which can
get to be rather large in cases.) This is done by hashing all the nodes in the
cloned graph by the index of the original node (in the original graph) where
they came from. In this scenario, when looking up a (cloned) node, we simply
have to search the bucket for other similar clones and see if there is one with
the same instate.

8.2.4 Future work

It would be really nice to make cfg node derived from suif_object so that
annotations can be attached to it.

8.3 Source Tree Structure and Binaries

The source for the project is organized in the following tree:

./ab_test : Source for a debugging tool ab_test which displays, in detail, all
the FALLTHROUGH and TAKE insets and outsets for all blocks of a
program’s cfg. Used to test the correctness of the dfa implementation;
preserved for historical reasons only.

Executed with a low-suif .sf1 file as input; produces output on stderr.
./ab_test/test : A few useful tests for ab_test.

./be : Source for the branch elimination pass be. The binary takes as input
a low-suif .sfl file and outputs another low-suif file that’s restructured
according to the branch elimination algorithm.

The program understands either or both of two command line parameters:

1. -count: counts the total number of conditional branches and the
number of avoidable branches in the program. It also annotates
avoidable branches so that they can be dynamically counted later
on. The count output is produced (or appended) in a file LOG in the
current directory (if the file doesn’t exist, it is created.)

2. -restructure: specifies whether to restructure the graph or not.
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Additional scripts of interest in this directory are variants of ascc—*:

1. ascc-S: standard SUIF script

2. ascc-be-S: restructures the graph by executing be -restructure
before agen

3. ascc-be-halt-S:restructures and instruments binaries (see be-counts
below.)

4. ascc-halt-S: only instruments binaries without restructuring them
(it does, however, execute be -count to gather statistics on the bi-
nary and dynamically count avoidable branches)

./be/sim : A rudimentary simulator for suif cfg trees that was used to im-
plement a test the preliminary restructuring algorithm. Preserved for
historical reasons only.

./be/toy : Simple, tailor-made, tests used to exhibit the amazing power of our
optimization pass.

./dfa : Source for the extended dfa library, that contains the analysis for avoid-
able branches and reachable blocks. Compiles to a static and dynamic
libdfa. [a,so].

./doc : The .tex, .fig, .eps files that constitute this document. To compile
the .dvi version of the paper, type latex proj.tex.

./haltsuif/be-counts : Source for a binary be-counts used to instrument the
cfg of a program and prepare it for halt. The cfg is instrumented with
information about the number of total instructions, conditional branches,
avoidable conditional branches and unconditional jumps. The binary is
executed as be-counts file.af file.ae.

./count : Source for a binary count which counts the number of effective
machine instructions in a machine suif program (ignoring labels etc.) The
program is executed as count file.ae and produces (or appends) its
input to a file LOG in the current directory (if the file doesn’t exist, it
creates one.) Used to determine code size increase after restructuring.

All these binaries compile by simply typing make in their respective directo-
ries.

9 Conclusions

To be written when we’re actually done with the project.
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