
1

Pipes
Discrete Event Simulator 
Implementation in Java

Razvan Surdulescu
CS380n, Spring 2003

mailto:surdules@cs.utexas.edu
mailto:surdules@cs.utexas.edu


2

Part 1

Project Goals
Literature & Implementations

High-Level Design



3

Goals
Learn about DES

Survey current literature on DES
Investigate existing DES implementations

Implement a DES
Write a free, simple Workbench clone in 
Java
Explore high-level architectural aspects
Explore low-level implementation aspects



4

Literature

Sources
CS380n lecture notes, Workbench [1]
“Introduction to DES” by Peter Ball [2]
“DES in Java” by Keld Helsgaun [3]

There are many papers, books, tools
Limited use on this project
Focused on learning a lot on my own 

http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html
http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html
mailto:p.d.ball@strath.ac.uk
mailto:p.d.ball@strath.ac.uk
http://www.dat.ruc.dk/~keld/research/JAVASIMULATION/JAVASIMULATION-1.0/docs/Report.pdf
mailto:keld@ruc.dk


5

Literature cont’d
Overview of DES

“Discrete event simulation is one way of building 
up models to observe the time based (or dynamic) 
behavior of a system.”[2]

DES constituents[2]
Entities/relations

The components that form the system
Entities can be permanent (assembly line machinery) or 
temporary (parts built on assembly line)



6

Literature cont’d
DES constituents cont’d

Executive
Responsible for advancing the clock or 
generating events

Clock/event queue
Orders the progress of entities through the 
system

Distributions
The random number generator(s) from which 
entities or events are drawn or generated



7

Literature cont’d
DES constituents cont’d

Results collection
Compute statistics about the simulation and 
present the results to the user

Time advance approaches[2]
Time slicing

Time advances in discrete intervals
Next event

Time advances to next significant event



8

Literature cont’d
Logic approaches[2]

Event
Instantaneous change in an entity
(+) Easy to understand, computationally efficient
(-) More difficult to implement than activity

Activity
Duration in an entity
(+) Relatively easy to understand
(-) Poor execution efficiency

Process
Joins events and activities to describe life cycle
(+) Less common, more planning required to implement
(-) Computationally efficient



9

Literature cont’d

OO techniques in simulation
DES libraries are extensible and self-
contained

Can be easily adapted to many different kinds 
of problems
Easy to use, do not require a lot of setup time 
or documentation

DES libraries can be shared and integrated
Easy to incorporate them into existing systems



10

Literature cont’d

Continuous vs. discrete simulation[2]
A continuous approach computes measures 
by means of equations (or systems of ~)
Continuous and discrete simulation 
approaches can be integrated nicely

Events trigger the computation of a continuous 
measure upon arrival or departure



11

Implementations
HyPerformix’s Workbench

Familiar with it from CS380n
University of Edinburgh’s SimJAVA

Process based DES package in Java
A simulation is a collection of entities each running 
in a thread, connected by ports and 
communicating via event objects.
A central system controls all the threads, advances 
the simulation time, and delivers the events.
Progress is recorded through trace messages.

http://www.hyperformix.com/
http://www.hyperformix.com/
http://www.hyperformix.com/products/workbench.htm
http://www.dcs.ed.ac.uk/
http://www.dcs.ed.ac.uk/
http://www.dcs.ed.ac.uk/home/hase/simjava/
http://www.dcs.ed.ac.uk/home/hase/simjava/


12

High-Level Design

Workbench clone
Use what works in Workbench

Similar way of constructing the model
Identical model components

Improve what is outdated in Workbench
Modern menus, frames, components, CUA
Models stored in XML
OS independent (Java)

http://www.cknow.com/ckinfo/acro_c/cua_1.shtml


13

High-Level Design cont’d
Approach

Event based simulator
A few concepts from SimJAVA (“ports”, etc.)

Automation
Model independent of UI

Models can be simulated programmatically

Extensible design
New widgets or statistics can be added easily



14

High-Level Design cont’d
Clean-room implementation

Purposefully avoided existing tools
More opportunity for learning
Tease out own design patterns
No 3rd party dependencies or idiosyncrasies

Small
Final binary is ~160k
Can run as an applet, great for demos or 
teaching



15

High-Level Design cont’d
Features

Components
Nodes: Source, Sink Service, Delay, Resource, Allocate, 
Release
Arcs: select transactions by probability, category

Transactions
Have category and priority

Resources
Are passive, non-addressable



16

High-Level Design cont’d

Features cont’d
Queues

Time rules: FIFO, LIFO
Queuing priorities: No Priority, Next Priority, 
Highest Priority

Statistics
Arrival rate, population, queue population, 
utilization, response rate, response time



17

High-Level Design cont’d

Features cont’d
Simulation

Warm-up time, maximum time length
Log can be exported to text file
Entirely event driven: Java is very poor at RT



18

Demo
The car wash problem [3]

A car wash services cars one at a time. When a 
car arrives, it goes straight into the car wash if 
this is idle; otherwise, it waits in a queue. The car 
wash operator waits when he has no work to do; 
otherwise he is in continuous operation serving on 
a FIFO basis.
Each wash takes exactly 10 minutes. The average 
time between car arrivals has been estimated at 
11 minutes.
Predict the maximum queue length and average 
wait time if one more car wash (an one more car 
wash operator) is installed.



19

Demo cont’d

Workbench model
Washers contains 1, then 2 tokens



20

Demo cont’d

Results (1 token, 2000 transactions):
Workbench:

Allocate node:
Queue length: 4.70
Response time: 51.798

Pipes:
Allocate node:

Queue length: 4.80
Response time: 52.298



21

Demo cont’d

Results (2 tokens, 2000 transactions):
Workbench:

Allocate node:
Queue length: 0.12
Response time: 1.41

Pipes:
Allocate node:

Queue length: 0.13
Response time: 1.41


	PipesDiscrete Event Simulator Implementation in Java
	Part 1
	Goals
	Literature
	Literature cont’d
	Literature cont’d
	Literature cont’d
	Literature cont’d
	Literature cont’d
	Literature cont’d
	Implementations
	High-Level Design
	High-Level Design cont’d
	High-Level Design cont’d
	High-Level Design cont’d
	High-Level Design cont’d
	High-Level Design cont’d
	Demo
	Demo cont’d
	Demo cont’d
	Demo cont’d

