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2. PRINCIPLES OF OPERATION 

 
The Ni1000 Recognition Accelerator is optimized for use in systems that require fast 
classification capabilities. Classification is the process of associating input data with categories 
or classes. In an optical character recognition application, for example, classification would 
consist of identifying the characters represented in data scanned off an image sensor. The 
output could be ASCII character codes corresponding to the images perceived by the sensor.  
 
A recognition system needs a memory that will allow it to distinguish among the classes. 
Generally, an algorithm produces such memory. The system studies a sample of inputs typical 
to the problem, called the training set, and learns the differences between classes based on 
their characteristics. The training set is a collection of input patterns and responses (i.e., 
expected class identification) typical to the problem. Learning is usually a phase in product 
development; classification is the operational mode. The Ni1000 Recognition Accelerator also 
facilitates on-chip learning for systems that require additional adaptation in the field.  
 
 
2.1 Pattern Recognition 
 
To illustrate the recognition process, consider a hypothetical industrial inspection task of 
separating nuts from bolts out of a stream of hardware moving on a conveyor past a set of 
sensors. The task of the recognition system developer is to devise a system that takes data 
from the sensors and assigns it a class, e.g., nut or bolt.  A system that can accomplish the task 
appears in Figure 2-1. Before entering the classifier, data output by the sensors may need to 
pass through a pre-processor that extracts features, such as the weight, size, shape, or aspect 
ratio of each piece of hardware. Each property is then a component of the feature vector. For 
example, the size is one feature in the feature vector; shape is another. The classification 
engine processes the vector and completes the recognition by making a sorting decision.  
 
Components of feature vectors tend to have random individual values. All bolts do not have the 
same weight, but their weight does have both upper and lower limits. Weighing a representative 
sample of bolts and charting the results to show the weight variation among bolts produces a 
Probability Density Function (PDF).  
 
In our example, nuts are generally lighter than bolts. The two hypothetical PDF graphs appear 
on the same axes in Figure 2-2. Using Bayes Rule, the system sorts the parts into the class with 
the higher PDF value. In Figure 2-2, pieces with weights below point C are likely to be nuts. 
Those heavier than C are probably bolts. Since virtually no bolts weigh less than B and no nuts 
weigh more than C, on the [A, B] and [C, D] intervals the decision is fairly simple. 
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Figure 2-1. Hypothetical Pattern Recognition System 
 
However, on [B, C] both choices are possible, and the system picks the one with the higher 
PDF. If the input is outside the interval [A, D], it is something unexpected, and the system 
classifies it as neither a bolt nor a nut. The system thus exhibits novelty detection capability.  
 
Additional features provide additional information to the classifier. The Ni1000 Recognition 
Accelerator can  handle input vectors with up to 256 dimensions.  
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Figure 2-2. PDFs For Nut and Bolt Weights 
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Figure 2-3. RBF Examples 
 
Input vectors describe points in a multidimensional feature space, which is the complete range 
of possible patterns of input data. In the example of the nut and bolt sorter, the axes of the 
feature space are the inputs from the sensors; they may include size, color, weight, and shape 
of each piece of hardware. Features belonging to each class tend to cluster into regions just as 
nuts in the example have similar weights. The learning process approximates the locations of 
the regions in feature space using Radial Basis Functions (RBF). Three examples of RBFs 
appear in Figure 2-3. An input close to the center of an RBF elicits a large response. Inputs far 
from the center produce insignificant responses. Figure 2-4 illustrates a two dimensional class 
region approximated using circular fields of influence centered on stored examples.  
 
The classification process maps input vectors onto feature space. The classifier then outputs 
the class of the region into which the input fell. If multiple classes fire, as may occur when an 
input falls into overlapping regions, probabilistic information can help resolve ambiguities.  
 
Examples of radial fields of influence are common in biological systems. Neuroscientists have 
found that a ganglion cell in the retina responds only to light detected by a small, circular area 
called the cell's receptive field. The cell produces no response, or it is actually inhibited from 
producing a response if it detects light outside the area. Receptive fields of adjacent cells tile 
the retina in overlapping RBF receptive areas to cover regions in feature space.  
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Figure 2-4. Approximating Feature Space with RBFs 
 
 
2.2 Learning and Classification Algorithms 
 
During the learning process, the recognition system develops a memory of class-region 
approximations and probability-density-function estimates for each point in feature space. The 
system studies a training set of input examples, along with their class labels, and learns to 
distinguish among the classes under the control of a learning algorithm.  
 
The Ni1000 Recognition Accelerator's on-chip microcontroller is intended to execute the 
learning algorithm code. It facilitates incremental learning outside the factory to adapt and 
customize the chip's memory to special circumstances that arise in the field. The Accelerator 
supports algorithms like Restricted Coulomb Energy (RCE) and Probabilistic RCE (PRCE) as 
well as other radial basis function algorithms like Probabilistic Neural Networks (PNN) and 
custom algorithms.  
 
Alternatively, the prototypes and their parameters can be loaded into the chip from outside. 
They may be the result of learning performed off chip, or they may simply consist of data that 
can take advantage of the calculations performed by the classification pipeline.   
 
 
2.2.1 Restricted Coulomb Energy (RCE) 
 
In RCE and other algorithms compatible with the Ni1000 Recognition Accelerator, learning is a 
process of approximating class regions in feature space with radial basis functions. The 
algorithm selectively stores a set of prototypical inputs, called prototypes, that are obtained from 
the training data, and it assigns to the field of influence of each prototype a radius called lambda 
(λ) or threshold distance.  
 
Before learning begins, the designer specifies minimum and maximum values for lambda. 
During learning, the Accelerator computes the distance between each input vector and any 
existing prototypes. Distances are defined as the sum of the differences between each 
component (dimension) of an input vector, u, and the corresponding component (dimension) of 
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a stored prototype vector, p. This metric, d, is called the city-block distance or Manhattan 
distance and is computed as: 
 

d u pi i
i

= −
≤ ≤
∑ | |

0 256

 (1) 

 
The algorithm then compares the distances with each prototype's lambda (λ) to determine 
whether or not the training input vector (which has an associated class) is within that prototype's 
field of influence. If the input vector does not fall within the field of influence of any prototype, 
the Accelerator stores it as a new prototype along with its class label and sets its lambda to 
λmax. If, however, the input is within the field of influence of a prototype in a class different than 
the one with which the input is tagged, the input is stored and both its lambda and the 
prototype's lambda are set to the distance between them. The algorithm does not store the input 
as a new prototype if it only falls within the field of influence of one or more prototype(s) in the 
same class. Instead, it increments the count for each firing prototype. Iterations through the data 
set continue until prototype storage and lambda adjustments stop.  
 
The pseudo-code for a typical RCE or PRCE training procedure is shown below. In the 
procedure, the italicized steps are for PRCE only. All others apply to both RCE and PRCE. The 
on-chip microcode supplied with the development system performs both RCE and PRCE 
specifications during learning.   
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{  // Learn RCE/PRCE 
Set λmin and λmax 
do 
 {  // begin epoch 
 Reset Ck's  
 do 
  {  // learn vector 
  Input next vector and its associated class (classi). 
  Compute the input vector's distance to each of the stored prototypes. 
  Compare distances to corresponding prototype's lambdas and determine firings. 
  Compute Dmin using the Dmin calculation procedure shown below. 
  If ((no prototypes of classi exist) or (no prototypes fire))  
   store input vector with λ = Dmin 
  else for k = 1 to khighest stored 
   if (Pk firing and (class of Pk = classi)) then Ck = Ck + 1 
   if (Pk firing and (class of Pk != classi) and (λ of Pk != λmin )) then  
    { 
    if (distance to Pk > λmin ) then λ of Pk = distance to Pk 
    else λ of Pk = λmin  
    } 
   } 
  } while more input vectors are available // learn vector 
 } while ((new prototypes were stored) or (any λ changed)   // end of epoch 
}  // Learn RCE/PRCE 
 
 
In the above pseudo-code, Dmin is calculated as: 
 
 Dmin = λmax 
 For k = 1 ... 
 
 
During classification, the algorithm computes the distances from the input vector to each of the 
prototype vectors stored during learning. If the distance to a prototype is less than the 
prototype�s lambda, the input receives the prototype's class label. The result of the RCE 
classification is a union of all firing classes. Probabilistic methods like PRCE described below 
can resolve ambiguities in case of multiple firings. 
 
 
2.2.2 Probabilistic RCE (PRCE) 
 
PRCE outputs the probability that an input belongs to a given class. While learning, the 
classifier stores prototypes and computes lambdas (λs) using the RCE algorithm. In 
classification, it computes probability density estimates throughout feature space for each class. 
The Ni1000 Accelerator performs the probabilistic calculations in parallel with the class firing 
calculations used in RCE.  
 
The PRCE algorithm finds its roots in Bayes Decision Theory. A Bayesian classifier computes 
an input's probability of belonging to each class by using corresponding class probability density 
functions (PDF's).  In a simple two-category problem in which class A and class B are the 
possible categories, an input vector u is a member of: 
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Class A when CA * fA(u) > CB*fB(u) (2a) 

or 
Class B when CA * fA(u) < CB*fB(u) (2b) 

 
where CA and CB are the a priori probabilities of pattern occurrence from category A and B, 
respectively.  The a priori probability CA is the ratio of the number of training patterns belonging 
to class A, to the total number of training patterns, and CB = 1 - CA. Functions fA and fB are the 
probability density functions for class A and class B, respectively.  
 
The construction of decision boundaries requires knowledge of the underlying PDF's, which 
must be determined through training. The PDF for each class may be constructed from a linear 
combination of a family of radially symmetric distribution functions, each centered on a 
prototype stored during training. Decaying exponentials shown in Figure 2-5 approximate each 
prototype's contribution to the PDF of its class: 
 

PDF CClass j
k d

P Class

j j

j

= ⋅ − ⋅

∈
∑ 2  (3) 

 
where d is the Manhattan distance between the input and the prototype, k is a decay constant 
specified by the host program before initiating PRCE classification, and Cj is the a priori rate 
obtained during training. Cj is the number of training patterns that belong to a class that fell 
within the distance λ j of the prototype pj. An example of the resultant PDFs appears Figure 2-6. 
 
The PRCE classification is a mapping of the input vector onto feature space, resulting in a set of 
PDF values (one value for each class). The host can then select the largest PDF value for each 
vector to determine its class. 
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Figure 2-5. PDF Contribution of a Single Prototype 
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Figure 2-6. Hypothetical PDFs for a Two-Class Problem 
 




