Data

In single-program multiple-data (SPMD) parallel programs, global data is
partitioned, with a portion of the data assigned to each processing node. Is-
sues relevant to choosing a partitioning strategy include:

e Load Imbalance Overhead—A time cost is incurred whenever some nodes
are kept idle while they wait for others to finish a task. Therefore, try to
distribute the computational work evenly among the nodes.

¢ Communication Overhead—Internode communication is often required
for carrying out computations on partitioned data. Each internode mes-
sage requires, at both the sending and the receiving nodes, a certain star-
tup time plus a time proportional to the length of the message. In addi-
tion, each message incurs a latency which can exacerbate load imbal-
ance. Therefore, try to minimize the communication-to-computation
ratio.

* Programming Complexity—The algorithms used to compute data parti-
tions vary in the amount of programmer effort they require. Library rou-
tines are available for partitioning regular data structures. Custom rou-
tines may be required for irregular structures. In general, the more com-
plex the partitioning algorithm, the better the resulting load balance and
communication efficiency.

In certain applications—tracking or simulating complex systems, for exam-
ple—the distribution of computational work among the nodes can evolve, re-
sulting in load imbalance. In some cases, adaptive repartitioning of the data
may be required.

In many algorithms, only elements near each other in the data structure enter
into any single computational step. Schemes for the numerical solution of
differential equations are often of this type. At every iteration, each entry in
the data matrix is updated, based only on its own current value and the val-
ues of neighboring entries.

In programs that perform computations only on neighboring data, internode
communication typically occurs across the common boundaries of adjacent
regions of the partitioned data. The distributed data structure is then charac-
terized not only by the amount and internal organization of the data in each
region, but also by the topology of the communication network that links ad-
jacent regions across their common boundaries. Figure 1-31 shows two ways
to partition a two-dimensional region, and the resulting communication to-
pologies.

Data

50

Figure 1-31: Communication Topologies

JEIHE 1
e lels e
819|101 ?—?—?—w
121314 | 15 12131415
! 012+
< 2 \ 3
0/ N\ 7 3 75 47
.
; 5 6
6

Global computations on distributed data often exploit a particular topology
of message-passing links. In particular, sequential algorithms based on the
principle of divide-and-conquer can often be made parallel using a tree topol-
ogy. Common tree structures and algorithms based on them are discussed in
the Trees section, below.

Sometimes, partitioning can be avoided altogether. For instance, an array
that is read often but seldom written can be copied onto each node. Any time
a write is performed, all the nodes must be notified, in order to maintain data
coherency.

Data Partitioning

Several approaches are available for partitioning a global data set among
nodes. An appropriate choice in any particular case depends on the nature of
the data and the computations to be performed on it. In general, simpler par-
titioning strategies apply to well-defined problem types, while more com-
plex strategies can apply to a wider range of problems. The next few sections
discuss a variety of strategies, in order of increasing complexity.

= Regular Partitions

A data set with a particularly simple inherent geometry—multidimensional
arrays are a common example—can be partitioned among nodes in a regular,
repeating pattern. Matrices, for instance, can be divided up by row, by col-
umn, or by block, as illustrated in Figure 1-32:

Data

51

Figure 1-32: Regular Partitioning

By Row By Column By Block

Of these three approaches, partitioning by block is often preferred when only
elements near each other in the data structure enter into any single computa-
tional step. Such computations require interprocessor communication only
along partition boundaries. Since the block partition creates a smaller total
boundary-length (4 units, in the figure) than the other approaches (8 units),
it has the smallest communication-to-computation ratio.

The blocks of a partitioned array can be mapped onto the hypercube nodes
simply and efficiently using gray codes. Each block (subarray) of data is as-
signed a code number that differs by only one bit from the code assigned to
any of its neighbors, as shown in Figure 1-33:

Figure 1-33: Gray Code Mapping

1 5
(001) (101)

(000) (100)

The nodes of the nCUBE 2 hypercube have gray-code hardware addresses;
nearest neighbors have processor ID (PID) numbers that differ only in a sin-
gle bit. Once the data blocks have been assigned gray code numbers, each
block is downloaded to the node whose PID matches (in its low-order bits)
the code number of the block. In this way, the mesh communication topology

Data

52

of the block-partitioned array is mapped into the hypercube topology so that
neighboring data blocks always reside on neighboring nodes. This maximiz-
es the data communication speed between nodes.

Setting up a regular partition requires very little computational effort. A reg-
ular partition establishes a simple, mesh-like communications topology
which is easily mapped into the hypercube with library routines. In many ap-
plications, however, regular partitioning can result in a load imbalance. Reg-
ular partitioning is useful primarily for problems in which all the data is sub-
ject to the same (or similar) computations. For example, consider a scheme
for approximating a solution to a differential equation using a simple recur-
rence relation. In any iteration, the amount of computational work required
for each entry in the data matrix is the same.

In the case of an airflow simulation, a regular partition might divide the
space into equal rectangular prisms. This is a good strategy for simulating a
quiet volume, such as a wind-tunnel with uniform flow, where the air densi-
ty and pressure are reasonably uniform. Each partition in this three-dimen-
sional world would have only six neighbors. The small surface-area-to-vol-
ume ratio of the partitions would keep communication overhead low. If a jet
engine were placed in the room, however, the resulting load imbalance
would be intolerable. The air inside a rectangular prism close to the engine
would require much more computation than the air in a prism of the same
size in a corner of the room.

In some applications, the computational work required to process a global
data object is concentrated in certain locations of the data, but it is not known
in advance which locations those will be. In a numerical integration scheme,
for example, the evaluation of the function to be integrated may be more dif-
ficult in some regions than in others. In such cases, a regular partition can be
used to enhance load balance by maximizing the dispersion of data. The dia-
gram below represents the partition of a long vector (with 12,000 compo-
nents) among four nodes, with no node being required to process any more
than 100 contiguous entries. In this way, computationally intensive clusters
of data (on the order of a few hundred components in length) will be dis-
persed evenly among the processors. (See Figure 1-34.)

Figure 1-34. Maximum Dispersion

Components 0-99 100-199 200-299 300-399 400-499 500-599 600-699 700-799

etc.

Node
Assignment 0 ! 2 8 0 ! 2 8

Data

53

= [rregular Partitions

Simple irregular partitions can sometimes be used when a regular partition
would cause too great a load imbalance. In the airflow simulation, for exam-
ple, the room could be divided up with a collection of horizontal planes of
varying vertical distances from each other. The data and computations for
each of the resulting slices is assigned to a different node. The slices will be
thin where they contain part of the jet and thick where there is relatively little
air movement. (See Figure 1-35.)

Figure 1-35: Irregular Partition

To compute such a partition, you would first estimate the density of compu-
tational work as a function of height, using either past experience or the
physics of the problem. The height axis is then subdivided into the same
number of intervals as there are nodes, in such a way that the computational
work (the area under the density graph) is the same in each interval. (See Fig-
ure 1-36.)

Data

54

Figure 1-36: Computation vs. Height

N

Relative

Density of \

Computational \

\
\
\\‘\ e —
Height Above

In the resulting partition, each region has only two neighbors. However, each
of the boundaries has a very large surface area, creating communication
overhead: the larger the surface area of a region, the greater the chance that
a particle will cross the boundary and require internode communication.

In general, the more complex the partitioning algorithm, the better the result-
ing load balance and communication efficiency. For each program, you must
decide where the optimal trade-off between complexity and performance
lies.

Using arbitrarily shaped regions with low surface-area-to-volume ratios, you
could in principle balance the computational load while minimizing commu-
nication overhead. This general optimization problem, however, is computa-
tionally intractable (NP-complete). Calculating even a near-optimal partition
generally requires a great deal of computational effort. Another drawback of
such a strategy is that the resulting communication topology may be highly
irregular—each node could have any number of neighbors, for example—
making communication routines difficult to program.

There are partitioning methods of intermediate complexity. After dividing
an area into bands of varying thickness, for example, one could go further,
and subdivide each slice. A two dimensional area partitioned in such a way
would look like Figure 1-37:

Data

55

Figure 1-37: Two-Dimensional Irregular Partition.

Such a partition is relatively easy to compute. It entails a slightly greater com-
plexity in the communication network than is required for the simple parti-
tion into bands, however. Each region has exactly one right and one left
neighbor, but a variable number of neighbors above and below. Each pro-
gram element must therefore maintain a map of its upper and lower bound-
aries, showing which boundary communications must be directed to which
neighbor.

Other partitioning methods can be found. There is, for example, nothing sac-
rosanct about rectangular subregions. Efficient algorithms exist for dividing
a large rectangle into triangular regions in such a way that:

¢ The regions are smaller and more numerous where the computational
load is greatest. You must specify the distribution of computational
work throughout the original rectangle as input data for the algorithm.

¢ The regions are not long and thin. A reasonable boundary-to-interior ra-
tio must be maintained, so as to minimize communication overhead.

Figure 1-38 illustrates an area partitioned using a method called Delaney tri-
angulation. The computational load is concentrated in the middle left.

Data

56

Figure 1-38: Delaney-Triangulated Rectangle

Communication is usually simple in such a partition, since each region has
exactly three neighbors along its edges. On the other hand, any message that
has to pass through a vertex of one of the triangles requires special handling,
since the number of regions sharing a vertex can be arbitrarily large. Algo-
rithms for decomposing a three dimensional space into tetrahedra also exist,
but they are complicated.

= Random-Access Data

In the previous examples of partitioning, only data from predictable loca-
tions in a given data structure entered into any one computational step. In
many applications, however, computations require data from unpredictable
locations in a global data structure. In these cases, each item is typically
stored together with information about its position in the global data struc-
ture.

In sparse matrices, for example, the location of non-zero elements is unpre-
dictable. A row index, a column index, or both, are therefore typically stored
along with each non-zero value.

Often, the records in a database are sorted in alphabetical order using a par-
ticular field. The value of that field for a given record encodes the location of
the record.

There are two approaches to partitioning such data:

Data

57

* Ad Hoc Optimization—If possible, arrange the data so as to minimize the
amount of data-movement required for the computations. Near-optimal
partitions have been worked out in the research literature for many spe-
cial cases.

* Data Permutation—Partition the data in a conceptually simple way, and
make use of library routines for sorting or other data permutations be-
fore each global computation. nCUBE 2 libraries contain routines for
common data permutations like sorting, matrix transposition, and in-
dex-shuffling for fast fourier transforms. Permutation routines typically
work in two stages. First they tag each piece of data with the ID of its des-
tination node, then they move the data.

Dynamic Repartitioning

For applications in which the computational work required by each block of
data is both predictable and constant in time, a static data partitioning, com-
puted at the beginning of program execution, is appropriate. Otherwise,
some form of adaptive repartitioning may be required to avoid processing-
load imbalances.

There are three issues involved in such adaptive partitioning;:

¢ Deciding when to repartition.
¢ Computing the new partition.
¢ Redistributing the data in the new partition.

An airflow simulator used to predict weather would require dynamic repar-
titioning, because areas of computational intensiveness (e.g. storms) are in
constant motion. You can compute a new partition for all the data after a pre-
determined number of simulation time steps, or you can set local criteria for
the repartitioning of individual regions. In a particle simulation, you can de-
tect shifts in the distribution of computational work by counting the particles
each node is required to keep track of. For differential equations, mathemat-
ical methods exist for estimating the computational error in each region. In
general, more computational effort should be devoted to regions where the
error is greatest. In one common strategy, regions are partitioned more finely
when the estimated error exceeds a predetermined value, and more coarsely
when the estimated error is especially small. In this way, computational re-
sources are adaptively deployed to maintain a predictable degree of accuracy
throughout the computation.

To compute a new partition, you can use the same algorithms that are avail-
able for computing a static partition. You simply provide the algorithm with
information about the current distribution of computational work. Once the
new partition has been computed, data needs to be redistributed among the
nodes. The choice of algorithm for redistributing the data depends heavily on
the nature of the partition.

Data

58

Often the calculation and redistribution steps can be interleaved. Consider
the airflow simulation example discussed above, in which a room is divided
into horizontal slices of varying thickness. Suppose that after some iterations
of the main program, the distribution of computational work has changed,
and new information has been collected about the density of computational
work as a function of height. From this point, there are many ways to pro-
ceed. One possibility is the following:

1. Each node is provided a copy of the load-distribution information; all
nodes then compute the room height at which half the computational
work lies above, and half below.

2. Throughout the simulation, half of the nodes are responsible for the top
half of the room, half for the bottom. Data is shifted as necessary from
the "top half" nodes to the "bottom half" nodes, or vice-versa, so that
each group will have the same total amount of work to do when the
main program resumes.

3. The partitioning then proceeds recursively, with each group of nodes—
"top half" and "bottom half"—computing the midpoint of its own com-
putational load, shifting data as needed, and then splitting into two
subgroups.

4. The computation ends when only one node is left in each subgroup. At
this point, the data have been distributed so as to balance the computa-
tional work among all the nodes.

This procedure is illustrated in Figure 1-39.

Data

59

Figure 1-39: Dynamic Repartitioning

Corresponding
Data To First
Group Of Nodes

/

Corresponding
Data To Other Group
Of Nodes

Data

60

Trees

Using nCUBE 2 parallel library routines, you can easily construct algorithms
that perform global computations on trees and related structures, particular-
ly computations that require gathering or broadcasting information to all the
nodes. Sequential algorithms based on a divide-and-conquer strategy can of-
ten be made parallel by using some kind of tree structure. Since the depth of
a tree is typically related logarithmically to the number of nodes, the result-
ing parallel algorithms can be very efficient.

The globalsum library routine is an example of such an algorithm. It computes
the sum of a collection of numbers, each of which resides on a different node.
The routine must be called by the program elements on all nodes. It returns
the value of the sum to each node. The operation on a hypercube of eight
nodes is illustrated in the time-line diagram below (Figure 1-40):

Figure 1-40: Time-Line Diagram for Globalsum

Data is passed from node to node down the communication tree shown in
Figure 1-41. At each node, the data from the child nodes is summed. After
three communication-and-computation steps (3=log,8), node 0 knows the
sum of the numbers from all nodes.

Data

61

Figure 1-41: Communication Tree for Globalsum

1 3 5 7
\ ‘ |
6

o

Eight such trees can be traced in the time-line diagram, each with a different
node at its root. Globalsum therefore returns the same value—the sum of all
the numbers—to every node. A collection of interlaced trees like the eight in
our example is called a Banyan net. Banyan nets can be used—by calling a li-
brary routine similar to globalsum, or by writing a custom routine—to per-
form globally any associative operation that works on two numbers or other
data items at a time.

The communication tree shown in the diagram above spans the hypercube in
such a way that nodes connected in the tree are nearest neighbors in the hy-
percube. This reduces communication overhead, but not by very much. The
message-routing hardware of the n"CUBE 2 makes communication between
distant nodes almost as fast as that between nearest neighbors. The main ad-
vantage of this tree is its conceptual simplicity and ease of programming.

In general, choose a tree topology based on the requirements of your problem
and the availability of useful algorithms. Mapping your tree onto the hyper-
cube should be your last step.

For instance, in the communication tree illustrated above, the number of chil-
dren belonging to a node—the fanout of the node—varies from node to node.
Node 0 has three children, while node 2 has only one child. Suppose a great
deal of memory is required in each node, per child. Then to distribute the
memory burden evenly would require a balanced tree structure, like the bi-
nary tree illustrated in Figure 1-42:

Data

62

Figure 1-42: Binary Tree

Of the sixteen nodes in the binary tree, none has more than two children, so
the memory burden in our hypothetical example is distributed fairly evenly.
Binary trees, moreover, allow certain important functions to be computed
easily. For example, the parent of node N is the node whose address is the
largest integer which does not exceed (N-1)/2. On the other hand, a binary
tree cannot be mapped into the hypercube in a way that preserves nearest
neighbors.

Research literature on parallel programming abounds in special-purpose
tree structures and algorithms exploiting them. For example, a near-binary
tree has been found that can be mapped onto the hypercube so that neighbors
are preserved. This tree controls fanout like a binary tree, but its use requires
more complicated algorithms. The following table summarizes the main
properties of the tree structures discussed in this section.

Tree Maximum Mapped as Parent of

Structure Fanout Neighbors? Node N

Hypercube Dimension of yes N-2K where 2K is

Hypercube the largest power

of 2 that divides N

Binary 2 no Greatest integer
not exceeding
(N-1)/2

n-ary n no Greatest integer
not exceeding
(N-1)/n

Near-Binary 2 yes Complicated

Data

63

